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Multifocal multiphoton microscopy (MMM) achieves fast imaging by simultaneously scanning multiple
foci across different regions of specimen. The use of imaging detectors in MMM, such as CCD or CMOS,
results in degradation of image signal-to-noise-ratio (SNR) due to the scattering of emitted photons. SNR
can be partly recovered using multianode photomultiplier tubes (MAPMT). In this design, however,
emission photons scattered to neighbor anodes are encoded by the foci scan location resulting in ghost
images. The crosstalk between different anodes is currently measured a priori, which is cumbersome as it
depends specimen properties. Here, we present the photon reassignment method for MMM, established
based on the maximum likelihood (ML) estimation, for quantification of crosstalk between the anodes of
MAPMT without a priori measurement. The method provides the reassignment of the photons generated by
the ghost images to the original spatial location thus increases the SNR of the final reconstructed image.

ultiphoton excitation fluorescence microscopy has inherent 3D resolution due to the nonlinear depend-

ence of excitation upon the incident light distribution". The excitation region is localized to a femtoliter

volume at the focal point of a high numerical aperture objective lens. Multiphoton excitation fluor-
escence microscopy is routinely used in a variety of tissue imaging applications due to its excellent imaging depth,
high resolution, and lower photo-damage. However, one of the practical limitations of multiphoton excitation
fluorescence microscopy is its imaging speed, typically up to a few frames per second. While this imaging speed is
sufficient in many cases, several types of applications require faster systems. These applications include the
measurement of dynamic processes including calcium signaling and action potential propagation®, high through-
put image cytometric studies of tissue physiology*®, and clinical applications where the effects of physiological
motion should be minimized. In vivo imaging of small structures, such as neuronal synapses, across a full
neuronal arbor can also be problematic due to the lengthy anesthesia required to scan large volumes at high
resolution®.

High-speed multiphoton imaging has been previously implemented using several approaches. The first
approach is based on using high-speed scanners such as polygonal mirrors’, resonant mirror scanners®, or
acousto-optical deflectors (AODs)’"* instead of galvanometric mirror scanners used in conventional multi-
photon microscopes. The high speed scanners can typically achieve a scanning speed of up to about 30 frames
per second with a comparable imaging depth in tissues as conventional multiphoton microscopy. However, these
high speed scanning systems require shorter pixel dwell time resulting in lower image contrast and poorer SNR.
This can be partially compensated by increasing the excitation laser power, but it is not always possible due to
photo-damage of the specimen and excitation saturation'***.

The second method is two-photon wide-field imaging'>'®. With the temporal focusing method, a 3D resolved
plane is generated at once by two-photon excitation instead of a focus eliminating the need for lateral scanner
resulting in faster imaging speed. However, its performance is often limited by the lower axial resolution
compared with conventional multiphoton microscopy and lower SNR due to the scattering of emission photons.
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Figure 1| Two experimental approaches for the estimation of a scattering matrix. (a) Sparsely distributed beads sample in tissue phantom (2%
Intralipid emulsion), and scattering matrix measurement from its MMM image. (b) Single focus excitation on a real sample and scattering matrix

measurement from its MMM image.

The third method is multifocal multiphoton microscopy (MMM),
which is an intermediate approach between the two previously
described techniques'”"*>. With a lenslet array or diffractive optical
element (DOE)**, a number of foci are generated simultaneously
and scanned together. The size of the whole scanning region corre-
sponds to the sum of the sub-region scanned by each focus.
Therefore, the imaging speed is improved proportionally to the num-
ber of foci. One practical limitation for the imaging speed of MMM is
available laser power. For typical titanium-sapphire laser with several
Watts of output, approximately one hundred foci can be effectively
generated for tissue imaging resulting in approximately two orders of
magnitude improvement in imaging speed.

Similar to two-photon wide-field imaging, the SNR of multifocal
multiphoton microscopy is also limited by the tissue scattering of
emission photons resulting in lower SNR compared with single focus
scanning multiphoton microscopy. Simultaneous detection of mul-
tiple foci requires detectors with spatial resolution that can distin-
guish signals from all the foci at the same time. Most multifocal
multiphoton microscopes use imaging detectors such as CCD or
CMOS cameras. However, when emission photons generated at
one focus are scattered in a turbid specimen and arrive at detector
pixels that do not map to the focus location, the SNR of the image
suffers. This lower SNR can be compensated by the use of multianode
photomultiplier tubes (MAPMT) in a descanned detection geo-
metry”. The larger detection area of each anode greatly reduces
the crosstalk between foci due to the scattering of emission photons
and significantly improves the image SNR.

However, with severe scattering in a turbid specimen, especially at
larger imaging depth, scattered emission photons will still arrive at
neighboring anodes, resulting in the formation of ghost images,
which are duplicates of the image acquired by one focus visualized
in neighbor sub-images. To remove the ghost images and to increase
the SNR of the original image, these scattered emission photons
should be reassigned to their original pixels. We have shown that
this can be accomplished by estimating the scattering matrix at one
location of the specimen that characterizes the crosstalk between the
anodes of the MAPMT due to emission photon scattering. By apply-
ing the inverse of the scattering matrix to the acquired image, an
improved SNR picture free from ghost images can be produced. The
estimation of the scattering matrix was done experimentally® (Fig. 1).
The first method of the estimation is using a tissue phantom with

similar optical parameter as real tissues containing sparsely distrib-
uted fluorescence particles. These fluorescence particles are imaged
by the MMM. The sparsity of the particles ensures that the ghost
images of each particle can be identified. By measuring the relation-
ship between particle intensities in the correct pixel and all its neigh-
bors, the scattering matrix can be calculated. However, the phantom
sample is often a poor model of a real tissue specimen on the micro-
scopic level where there is significant heterogeneity, potentially lead-
ing to a significant error in image post-processing. Second, the
scattering matrix can be calculated with a real sample by exciting
only one focus at a time in the same MMM system. This method
gives the exact coefficients for the scattering matrix. However, since
the scattering matrix is a function of specimen location, due to het-
erogeneity, and depth, due to increased scattering, scattering matrix
must be measured frequently. This labor intensive measurement pro-
cess partly negates the speed advantage of applying MMM imaging.

In this work, we demonstrate a novel image post-processing
approach for MMM that allows estimation of the scattering matrix
without any additional experimental measurement. The proposed
approach is based on maximum likelihood estimation quantifying
the crosstalk between the different anodes of the MAPMT based
on the actual optical model of the MMM system. This approach
reassigns the photons that are originally detected at wrong anodes,
appearing as ghost images, to the correct anode location. Therefore, it
greatly improves signal strength and simultaneously minimizes ghost
images in the neighboring sub-images. Since the proposed approach
uses only the images generated by the MMM without any tissue
dependent a priori information, the characterization of the scattering
matrix can be estimated at each location and depth. A mathematical
model of the proposed approach is presented and validated first with
simulation data where the results show the convergence of the
method to the actual fluorophores structures. The performance of
the proposed method is then employed for fluorescence beads and
mouse neuron images where the results are quantitatively analyzed.

Methods

MMM configuration. We have developed two MMM systems; one with 45 pum foci
separation, and the other with 85 pm foci separation. Fig 2 shows the schematic of the
MMM with 85 pm foci separation based on a diffractive optical element (DOE) for
multiple foci generation and the MAPMT in descanned detection geometry. The light
source used is Chameleon Ultra II (Coherent, Santa Clara, CA). The excitation laser
beam is expanded and illuminates the 8 X 8 or 4 X 4 DOE (customized, Holo/Or,

Rehovoth, Israel) depending on the excitation wavelengths (8 X 8 for 780 nmand 4 X
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Figure 2 | Schematic of MMM based on the MAPMT.

4 for 910 nm). The beamlets are shrunk according to the size of x-y galvanometric
mirror scanners (6215H, Cambridge Technology, Lexington, MA), and are
overlapped on the scanning mirrors. The beamlets reflected by the scanners are
expanded again to fill the back focal plane of a 20X water immersion objective lens
with 1.0 NA (W Plan-Apochromat, Zeiss, Thornwood, NY), and enter the aperture
with different entrance angles. The objective lens generates an array of 8 X 8 or 4 X 4
excitation foci on the focal plane in a specimen. The image is formed by raster
scanning of the excitation foci across the specimen using the scanning mirrors. The
excitation foci are separated from each other by 85 pm, and each focus scans slightly
larger than the area of 85 pm X 85 pm in the sample plane to facilitate the montage
assembly. The scan area covered by the 8 X 8 foci is 680 pm X 680 pm with the
85 um separation, and 340 pm X 340 pm by the 4 X 4 foci. The emission photons are
collected by the same objective lens and descanned by the scanning mirrors. The
descanned emission beamlets are essentially stationary in relation to the scanning
speed. The emission beamlets are reflected by a dichroic mirror (Chroma
Technology, Bellows Falls, VT) toward the MAPMT and are focused onto the center
of each corresponding anode of the MAPMT (H7546B-20, Hamamatsu, Bridgewater,
NJ). An IR blocking filter (BG39, Chroma Technology, Bellows Falls, VT) and a short-
pass filter (ET680sp-2p, Chroma Technology, Bellows Falls, VT) is installed before
the MAPMT to block the excitation light. The MMM system with 45 pm foci
separation has a very similar system configuration, but uses a different model Ti-
Sapphire (Ti-Sa) laser (Tsunami, Spectra-Physics, Mountain View, CA) pumped by a
continuous wave Nd:YVO, laser (Millennia, Spectra-Physics, Mountain View, CA) as
a light source, a different 8 X 8 micro-lenslet array (1000-17-S-A, Adaptive Optics,
Cambridge, MA), and a different 0.95 NA objective lens (XLUMPLFL20XW,
Olympus, Melville, NY). In this case, the 8 X 8 foci with 45 um foci separation cover a
360 pm X 360 pm scan area in the specimen.

Image reconstruction methodology. Let O(x,,z) be the fluorophores distribution in
the specimen assuming constant irradiance per unit volume with the specimen. For
two-photon point excitation at scan position X', the excitation intensity distribution at
the specimen projected by an objective with a normalized 3D intensity PSF h(¥) is
E(%)=E,0(x—¥)®h(X)=E,h(X—*'). Here E, is the maximum intensity and the
symbol, ®, represents the 3D convolution operator. The fluorescence intensity
generated at the specimen due to two-photon process is:

FxX)=El*(*—%) 0 (1)
The effect of emission photon scattering can be modeled generally by a emission PSF
hm(%). Assume h,,(¥) = h(¥) in the absence of scattering and W () represents the PSF
for the scattered emission photon.

b ()= (1 — 0)h(%) +ah' (%) @)

Without the emission scattering effect, the emission photon scattering strength, a, is
zero. In general®, even in the presence of scattering, the amplitude of the modification
term is generally small. Also, it has been observed that /(%) typically has full-width-
at-half maximum that is orders of magnitude larger than that of h(x)*.

The intensity distribution at the image plane in epi-detection geometry is:
I(x,p. %) = [E3h* (3 — %) O@)| @ ()]0 (3)

For the MMM system, let N X N equally spaced foci be arranged on a rectilinear grid
with reference positions {X] ,......%% v }, where ), , = {mA,nA,0), m and n are the
foci indices, and A is the separation distance between foci. In order to generate an
image using MMM, this grid of foci must be scanned to cover each A X A sub-regions
for the corresponding axial plane. The signal for an MMM system at location (x,y) of
an imaging sensor (CCD or CMOS) at any scan location (i,j,k) can be written as,

N.N
Do (eysifk) =Y I(xp. %, +% %)
m,n

x (4)
=) AR G-, ,— %) 0GE+X)| ®hn(%5)} =0

For a given z-plane, k, using an imager (such as a CCD or CMOS camera with sensor
size M X M) that integrates the signal for all the lateral scan steps, the final single
plane image can be written as:
MM
IMMM (x,y k)= Z IMMM (x,y o k)
ij
(5)

MM N,N

=D D ABRGE-K),,—% ) 0G+F)] ®hn(FK)} .0

ij mn

It is clear that in this case, the final image is “blurred” by the emission PSF and SNR is
degraded. Instead of using an imager such as a CCD, we can also use a multianode
PMT. By doing so there are two main differences™: (i) the image is descanned in the
multianode PMT to ensure that the foci are center at each anode of the PMT, and (ii)
the signal at each anode is integrated at each scanning step.

NN
Iyp(x.y.i.j,k) = Z {[BRGE—5),, — %)) OG + X @hm(F )} 2= 0x —x-+ ia/My =y + o/

mn

N.N
=y [dx”dy”dz”Eghz(x” —mA—iA/m.y" —nA—jA/M.Z")

m.n
. "o G " " "
O(x Y2 +kA )hM(xix YTy 22 ’k) z2=0x=x+iA/My=y+jA/M

NN
- Z J dx'"dy" dZ" Egh* (" —mA —iA/M.y" —nA—jA/M,Z")
m,n

0"y 2" + kA Y (x+iA /M —X" y+jA /M —y" ,—2" k)
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For specimen with tissue-like scattering property, we may assume h'(¥) to be broad
and smooth on the length scale of A. Therefore, the integrand of the integral may be
replaced by a set of constant values C(, p) ().« that are related to the radially inte-
grated PSF (H)) of the scattered light. Here (a,b) are the anode index and (m,n) are the
fociindex. The elements of C matrix is depth dependent, specified by k for the given z-
plane. Considering that the emission PSF can be further separated into a part taking
into account of scattering, Eqn. (6) can now be rewritten as,

Iyp(a,b,ijk)=1— m(k))EgHO jdx”dy”dz’hz(x”,y”,z/)'O(x” +aA+iA/My" +bA+jA/MZ +kA")

(™

N.N
+au(k)E] Z Clab)(mn)k [dx" dy"dZ (" y" 2y O +mA+iA/M,y" +nA+jA/M,Z +kA')
Then equation (7) can be further simplified as:
NN
Tup(a.b.iijik) = (1 — (k) Hol(a.b.ijik) + (k) > Capymmil(m.mijik)  (8)
mn

Note that we have generalized the emission photon scattering strength, «(k), to be
depth dependent but invariant over each 2D plane. The detection process consists of
measured photon count by each anode (a,b) at each scan location (i, j, k), i.e.
N(a,b,i,j,k). N(a,b,i,j,k) should follow Poisson statistics with a mean given by
Inp(a,b,ijk).

Maximum Likelihood Estimation. The log-likelihood function of the readout
process, described in eqn. (8), can be written as.

Is= " [N(@,b,ijk) In Iyp(a,b,isjik) — Iun(a,b.ijik)] )
a.b,ijk

This log-likelihood function utilizes the actual optical model of the MMM for the
maximum likelihood estimation of specimen fluorophore distribution. Our approach
provides maximization of log-likelihood function and, thus, provides the
quantification of the scattering matrix that is used for the reassignment of the image
photons originally recorded as ghost image photons by the neighboring anodes of
MAPMT to the correct spatial location. Therefore, photon reassignment can be
casted as a blind deconvolution problem that seeks to recover the image Iyp(a,b,i,j,k),
the depth dependent emission photon scattering strength, o(k), and the mixing
kernel, Cg p),(m,n).x given N(a,b,i,j,k).

The original fluorophores distribution at the corresponding axial depth recorded
by the MMM system can be considered as the ‘first guess’ for the iteration process and
the maximization of log-likelihood function can be performed using a numerical
optimization method which iteratively improves the strength of the actual signal by
reassignment of ghost-image photons to the correct spatial location. We adopted
Newton’s method for maximizing the log-likelihood function and the iteration step
for maximum likelihood estimation of fluorophores distribution can be written as:

i) Maximization of the likelihood function with respect to I(a,b,i,j,k) to get a
better estimation for this variable:

{BIS(LHQ,CJ,I()}
@b R [ 1(a.bij k) =10 (ab.ijik)
1,1, Hy.C.o.k)
O (a,b,ijk)

14D (a,b,i,j.k) =19 (a,b,i,j,k) —

(10)

L(a,b,ij,k)=10(a,b,ij.k)

(ii) Maximization of likelihood function with respect to C to get a better estima-
tion for this variable:

{EIS(I,HO.CJ(-,)()}
aC X k)
@bk J Clapymnk = Clabimmk

kD

_
(a,b),(m,n).k — C(u,h),(m;,n),k - {

(11)
& IQ(IAHU‘Ca{k)}

ac; ) A
O] Gty onmi = Cl[:,'b),(m_n} k

(iii) ~ Maximization of likelihood function with respect to « to get a better estima-

tion for this variable:
{flj(l.Hg,C,az,k)}
(k) o u=ih)

—5® _

&(k-%— 1)
11, Hy,C,26k)
0 a=ab

(12)

Here I, C®, and 4 are the estimated fluorophores distribution, scattering
matrix coefficients, emission photon scattering strength respectively at k" iteration
step. The maximization process simultaneously updates the new estimate of I+,
C**Y, and 4*+D for iterative step k. The log-likelihood function is evaluated
at each iteration step for maximum likelihood estimation of fluorophores distri-
bution. The accuracy of this estimation partly depends on the initial estimates chosen
and on the constrained parameters, i.e., positivity of the fluorophores. In the
manuscript, we describe the process evaluating initial estimates of the unknown
parameters from the recorded MMM image and show the applicability of the pro-
posed method for simulation and experimental results. Fig. 3 provides the summary
of the proposed photon reassignment algorithm for the MMM system.

Results

Simulation results. 4 Spots in a 2 by 2 MMM image. To test the
feasibility of our approach, we started from the simplest case using
simulations. We simulated a replica of a 4 bead image in a 2 by 2
MMM [Fig. 4(a—(b))]. Fig. 4(a) shows the original image of 4 beads

MMM image
Iup(a,b,i,j, k)
2 ZS— e 2N — ; ¥
! Cleaner Image Scattering coefficients Emission scattering | Number of
e (first guess) (first guess) coefficient (first guess) | photons
| 19(a,b,i,j,k) €O ) mn a® ) | N(ab,ij.k)
L=< [ ey [ ypppp——— Femmmm=- [ ey p———— 1 T
Log-likelihood function
lS(i(t)l é(f)’ &(t) (k)! N)
A7 v L4
Cleaner Image Scattering coefficients Emission scattering
(updated) (updated) coefficient (updated)
fe+D (a,lb. iLj k) c (t+1)(a,]b),(m.n),k &+ (k)
T
v
Log-likelihood function
(updated)
ls(i(t+1), C"(t+1), d,(t+1)(k)'N)
No

Figure 3 | Summary of the photon reassignment process for MMM.

Convergence
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Figure 4| (a) Original 4 beads image in a 2 by 2 MMM. (b) A scattering-affected image of (a); one sub-image contains one primary bead image and
three ghost bead images with the specified proportions. (c) The processed image of (b). (d) Original alphabet image in a 2 by 2 MMM. (e) A
scattering-affected image of (d) in the same fashion. (f) The processed image of (e).

without ghost images, which would be the target of our simulation.
For the MMM image, shown in Fig. 4(b), each sub-image contains
one primary bead image with three ghost bead images, and for the
sake of simplicity there is no overlap between the beads. Any
scattering-simulated sub-image contained 100% of the intensity of
the primary bead, 20% of the intensity of the adjoining beads,
and 14% of the intensity of the diagonal bead. We added Poisson
noise in the simulated image by using the ‘imnoise’ function of
MATLAB (MathWorks, Natick, MA). The proposed method
requires the first guess of the cleaner image I'V(a,b,i,j,k), scattering
matrix coefficients C((cll,)b),(m,n),k’ and emission photon scattering

strengtha)). We chose the actual MMM image as the first guess
for the cleaner image. In order to keep the proposed method
adaptive, and to automatically generate the first guess for
scattering matrix coefficients and emission photon scattering
strength we used the following steps:

(1) Identify the spatial position of the pixel (and its MAPMT
anode) that contains the maximum intensity in the entire
MMM image.

(i)  Observe the intensities at the pixels corresponding to same
spatial location of all the neighboring anodes identified in
step (i).

(iii)  Generate the intensity ratios of the maximum value pixel to
neighboring anode pixels.
(iv)  Repeat the steps (i)-(iii) for a few more values next to the

maximum intensity, if possible, and take the mean of the all
these values (coefficients of the scattering matrix).
) More coefficients of the scattering matrix for the other anodes
are calculated in the same manner described in the previous
steps. These calculated coefficients are used for the first guess
of the scattering matrix. In order to conserve the photon
count, the sum of each row of scattering matrix (representing
one anode under observation and its contribution in all
neighboring anodes of MAPMT) is normalized to 1.
The mean value observed in step (iv) is also considered as the
first guess of emission photon scattering strength i.e.5").

(vi)

We processed the simulated MMM image by initializing of the
parameters as discussed above. The iteration process, as shown in
Fig. 3, seeks to maximize the log-likelihood function and assigns the
scattered emission photons of the ghost images to the original spatial
locations. During the iterative process we defined two constraints;
first total number of photons of the MMM images is constant before
and after the processing, and second the positivity of the pixel values
(as the fluorescence signal cannot be negative). The reconstruction
process took around 10 iterations and Fig. 4(c) shows the processed
image. It can be visually observed that all the ghost images are com-
pletely suppressed in the final reconstructed image. The bead intens-
ity is increased after processing, representing the reassignment of
photons from the ghost image locations. Quantified results for the
improvement in signal strength and signal-to-ghost image ratio
(SGR) are presented later in this paper.

Alphabets in a 2 by 2 MMM image. Next, we tested our reassignment
method in a simulation of an alphabet image. The alphabet image
contains certain shapes and overlaps that provide more complexity
as compared to the simulated beads image. Again, an original image
without ghost images was generated [Fig. 4(d)] as the reassignment
target. Then, ghost images were imposed on all sub-images in the way
that one sub-image in a 2 by 2 MMM image contains one primary
alphabet image with the ghost images of the other three alphabets
[Fig. 4(e)]. A given scattering-affected sub-image contains 100% of
the intensity from a primary sub-image, 20% of the intensity from
the two nearest neighbor sub-images along the horizontal and vertical
directions, and 14% of the intensity of the farther neighbor along the
diagonal direction. To start the iteration process the first guess of the
scattering matrix and emission photon scattering strength was calcu-
lated as before. The final processed image, shown in Fig. 4(f) shows a
cleanly reconstructed alphabet similar to the original. Clearly, the
effects of ghost images are significantly suppressed from the MMM
images by using the proposed approach. As discussed before, the image
intensity of the processed image is higher than the original simulated
image because of the reassignment of the ghost image photons to their
original spatial locations from which they were scattered.
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Figure 5| (a) Intensity comparison of the simulated beads MMM image (blue, main anode + ghosts, subjected to Poisson noise) and their processed
images (red) showing photon conservation after the process. (b—d) Scattering matrix elements distribution at 2 by 2 MMM anodes. (b) Original

distribution used in simulation, (c) estimated distribution of the processed bead image, and (d) the alphabet image. One sub-image contains primary
element of scattering matrix from the corresponding anode of image, and three scattering matrix elements showing the leakage of emission photons to the

neighbor anodes due to scattering.

To evaluate the performance of the proposed method, we quanti-
tatively analyzed the reconstruction results. Fig. 5(a) demonstrates
photon conservation between the total intensity of the simulated
MMM bead images and the processed images after photon-reassign-
ment. The intensities of the simulated bead and its ghost images in
the MMM image are summed and the sum is compared with the
summed intensity of the same beads in the processed image. The
error bars, in the MMM images, show the range of Poisson noise
added in the simulation. Clearly, the reconstructed intensities at the
different anode locations are within this Poisson noise range dem-
onstrating that our algorithm conserves photons when signals from
the ghost images are reassigned to correct spatial locations. Next, we
compared elements of the scattering matrix corresponding to differ-
ent anodes. The scattering matrix elements for the (1,1) anode should
be [0.61 0.14 0.14 0.1] based on the preset parameters and the
acquired emission photon scattering strength with normalization,
and the same ratio follows for other anodes depending on their
spatial locations. Our target is to compare the recovered scattering
matrix elements based on the proposed approach with the original
one used for simulation. Fig. 5(b) shows the original scattering
matrix elements used for simulation of both bead and alphabet
images. Fig. 5(c) and (d) show the reconstructed scattering matrix
elements for the bead and alphabet images respectively. In both cases,
the reconstructed scattering matrix matches very well the original
values used to generate this simulation.

The accuracy of the proposed method is evaluated with known
underlying structures and with realistic noise level. We demonstrate
that the proposed algorithm can accurately recover the expected
features, and that the photon number is conserved between the

simulated and processed images as expected for correct reassign-
ment. The first guess of unknown parameters can often be estimated
with good accuracy, as discussed above, resulting in a faster, more
accurate MLE process. In order to further demonstrate the influence
of the first guess we processed the MMM alphabet image using
different first guess estimates and quantitatively compared the
results. Fig. 6(a) shows the reconstruction results (same number of
iterations used to process Fig. 4(f)) when using an incorrect first
guess. For the incorrect first guess, we used half the intensity ratios
used for the correct initial guess. Fig. 6(b) shows the quantitative
comparison of the processed results from the incorrect first guess
to those obtained using the correct first guess. It can be clearly
observed that in the case of wrong first guess the signal recovery is
not complete and photons corresponding to ghost images remain at
the neighboring anodes. The recovery of the correct reconstruction
results, for the wrong initial guess, can be possible by increasing the
number of iteration. We observed that for the wrong guess (used for
the Fig. 6(a)), the correct reconstruction result is achieved when the
number of iterations is doubled. Therefore the effect of incorrect first
guess mainly results in added computation time but not at the
expense of an incorrect image.

Experimental results. Fluorescent beads image in 6 by 6 MMM with
85 um foci separation. We tested our proposed approach with a
fluorescent bead image taken from the 6 by 6 MMM (with foci
separation 85 pm). The sample was imaged in the 8 by 8 MMM
system described in Sec. 2.1. The image was trimmed to contain
only 6 by 6 sub-fields for further image processing due to low
signal levels at the edge of the field of view. The sample was
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prepared with 10 and 15 pum diameter fluorescent latex microspheres
(F8836 and F21010, Molecular Probes, Eugene, OR) immobilized in
3D bya 2% agarose gel. A 2% fat emulsion (Microlipid, Nestle, Vevey,
Switzerland) was added to mimic the scattering characteristic of a
tissue specimen.

The left column of Fig. 7 shows the acquired fluorescent beads
MMM images at four different depths (0 um, 40 pm, 85 pm, and
135 pm). As expected, the scattering effect intensifies with increased
imaging depth resulting in more prominent ghost images. To sup-
press the effect of the ghost images and to reassign the photons of the
ghost images to their original spatial locations, we used our proposed
method. For the 6 by 6 MMM image, total 36 X 36 = 1296 coeffi-
cients are necessary for the scattering matrix C. As the scattering
effect is different with depth, it is necessary to separately estimate
the first guess of the scattering matrix and emission photon scatter-
ing strength for each depth. To start the photon reassignment itera-
tion process, we used the same criteria described in section 3.1.1 to
evaluate the first guess of the scattering matrix and scattering
strength. The iteration process took around 30 iterations and the
right column of Fig. 7 shows the processed images at their corres-
ponding depths. Clearly, most of the strong ghost images were
removed successfully, and only the primary bead images were left
with better signal strength. To understand the performance of the
proposed method on the signal levels of the imaging bead and its
effect on the ghost image, we analyzed some of the relevant imaging
parameters of the original and the processed MMM image.

Fig. 8(a) shows the strength of the signal of the bead at its original
spatial location before and after processing. As expected, the strength
of the signal is higher for the processed images, particularly at the
larger imaging depths since the processing provides the reassignment
of photons from the ghost image locations to the original bead loca-
tion and thus increases the strength of the signal. This improvement
in signal is expected to be higher for the larger imaging depths
because the higher scattering contributes to stronger ghost images.

To analyze the performance of the proposed method more precisely,
the ratio of the signal at original bead location to the signal detected at
its strongest ghost image location was calculated, and termed signal-
to-ghost ratio (SGR), as shown in Fig. 8(b). SGR was calculated for
original and the processed images at each imaging depth. As
expected, the SGR is highest for the shallowest imaging depth
because of low scattering. The SGR of the original image, which is
significantly lower for the large imaging depth because of severe
scattering, is substantially recovered in the processed image. The
increase of the SGR at 0 pm depth even with no intensity change
is due to the suppression of the background noise during processing.

Elements of scattering matrix at the bead image location anode
and adjacent nearest neighbors were analyzed for different imaging
depth, as shown in Fig. 8(c). As the imaging depth increases, due to
increase in the emission scattering the scattering matrix elements
become flatter so that the ratio of main anode to neighboring anodes
decreases as previously investigated in Ref [25]. This effect is further
elaborated by plotting the values of emission photon scattering
strength acquired at different imaging depths, as shown in
Fig. 8(d). As the imaging depth increases, the emission photon scat-
tering strength increases exponentially as expected.

Mouse brain imaging in 4 by 4 MMM with 85 pm foci separation. We
next tested our approach with a mouse brain image taken in the 4 by 4
MMM system. Thyl-GFP transgenic mice*® had surgery for cranial
windows that were bilaterally implanted over the visual cortices
between 6-8 weeks of age”. These mice express green fluorescent
protein (GFP) in a sparse pseudo-random subset of neocortical neu-
rons. Imaging was performed on adult mice (>3 months) previously
implanted with cranial windows. Mice were anesthetized with iso-
flurane (3% for induction and 1.5% during imaging). Anesthesia was
monitored by breathing rate and foot pinch reflex. The head was
positioned in a custom made stereotaxic restraint affixed to a stage.
Cell body and dendritic arbors of inhibitory neurons labeled with
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GFP in layers 2/3 of visual cortex were imaged. The excitation wave-
length was 910 nm, the laser power per focus was about 42 mW, the
dwell time was 40 ps with 0.5 um pixel, and the image size was
340 um X 340 pm with 4 X 4 foci.

The left column of Fig. 9(a) shows the MMM images of the mouse
brain at 100 pm and 190 pm imaging depths. Ghost images can be
visually observed at both depths; they are, of course, more prominent

Log-likelihood function

-10

5 10 15
Number of iterations

20

Figure 10 | Plot of log-likelihood function for number of iterations.

for the larger imaging depth. The proposed approach was used to
suppress the effect of the ghost images and to reassign the photons of
the ghost images to their original spatial locations. For the 4 by 4
MMM image, total 16 X 16 = 256 coefficients are necessary for the
scattering matrix C. We used the same criteria as described above to
evaluate the first guess of the scattering matrix and emission photon
scattering strength. Processed images are shown in Fig. 9(a), the right
column at the corresponding depths. The accuracy of the approach
can be seen in the removal of all ghost cell bodies. Further, the
resultant final images contain realistic dendrite branches that are
connected to the neuron body, and without unconnected branches,
as would be expected from known neuronal anatomy. We chose this
sparse image to test the recovery of real image features after reas-
signment because we can easily trace the neuronal dendrite. With the
expectation of similar behavior of imaging parameters as shown in
Fig. 8, we analyzed the behavior of scattering matrix elements and
scattering strength at different depths and Fig. 9(b) and (c) show the
plot of their values as a function of depth. Similar to the result of the
bead sample in section 3.2.1, the scattering matrix becomes flatter as
the imaging depth increases showing more widely spread emission
photons due to scattering. As expected, the emission photon scatter-
ing strength fits well to an exponential function.

Fig. 10 shows the plot of log-likelihood function versus number of
iterations for the processing of mouse brain images as shown in
Fig. 9(a). Convergence of the log-likelihood function starts at around
15 iterations, which provides the final processed image. It should be
noted that imaging time and image processing time are not equival-
ent, especially for in vivo experiments. For example, the increase in
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imaging speed using MMM reduces the typical time, from approx. 90
minutes (pixel residence time: 40 ps, 756 X 756 pixels scanned per
XY plane using single focus excitation, 125 XY planes in Z stack) to
approx. 6 minutes (16 pixels at the same residence time of 40 ps), for
high resolution imaging of an entire neuronal volume in the brain of
a living mouse. This reduction in image acquisition time is critical in
terms of reducing anesthetic duration to minimize physiological
influence and animal attrition. Further, we observed that with equal
pixel residence time, the 4 by 4 MMM imaging system improves
imaging speed by 16 fold compared to a typical single focus multi-

Table 1 | Contrast comparison of original and processed liver
images for imaging depths 20 um and 30 um

Original Processed
Depth: 20 pm 0.62 0.87
Depth: 30 pm 0.54 0.81

photon excitation fluorescence microscope, but maintains almost
equivalent image SNR. The total computational time taken for pro-
cessing two 4 by 4 MMM images was around 40 seconds using a
standard desktop computer with i5 processor. This is about 10 times
longer than the time for image acquisition but still substantially
shorter than single focus acquisition. More importantly, the proces-
sing time could easily be reduced to below image acquisition speed by
parallelizing computation with graphical processing units (GPUs).
With ever increasing and cheap computation power, we have no
doubt that the bottleneck lies in physical image acquisition rather
than image processing.

Liver tissue imaging using 6 by 6 MMM with 85 um foci separation.
We further tested our approach with liver tissue imaging containing
significantly denser features. The imaging was performed with a 6 by
6 MMM system with 85 um foci separation. The livers of male
Wistar rats with an average weight of 200 g that underwent bile duct
ligation surgeries were harvested in accordance to the Institutional
Animal Care and Use Committee regulations at the Biological
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Resource Center of A*STAR Singapore®®. The liver tissue specimens
were obtained from the paraffin preservation of the livers after fixa-
tion by cardiac perfusion with 4% paraformaldehyde.

Fig. 11(a) shows the original MMM image and the processed
image of the liver tissue sample at 20 pm and 30 pm imaging depths.
The ghost images in MMM are not so prominent. Because of the
dense features scattering mainly generates a relatively uniform back-
ground haze at the neighboring anodes. In this case, the proposed
method suppresses the photons in the uniform background haze and
reassigns them to the original anode location. Fig. 11(b) shows the
intensity line plots for both imaging depths. It can be clearly observed
that for the processed images the background noise is suppressed and
image features are extracted with better signal strength. Contrast of
the features, highlighted in Fig. 11(b) at the 20 um and 30 um
imaging depths, is calculated for the original and processed image.
The quantitative comparison of contrast is shown in Table 1. Clearly,
the proposed method improves feature contrast; essentially because
of the improvement in signal strength due to concurrent suppression
of the background haze at the respective anode and more effective
utilization of the available image photons.

Fluorescent beads and Mouse brain imaging in MMM with 45 pm foci
separation. We tested our proposed approach with a fluorescent
beads taken from MMM system with 45 pum foci separation. The
reduced separation of the foci, for the same scattering conditions
increases the crosstalk between foci and results in stronger ghost
images. The bead sample was prepared with 4 pm diameter fluor-
escent latex microspheres (F8858, Molecular Probes, Eugene, OR)
immobilized in 3D by 2% agarose gel. A 2% intralipid emulsion
(Liposyn III, Abbott Laboratories, North Chicago, IL) was added
to mimic the scattering characteristic of a tissue specimen.

Fig. 12(a) shows the raw fluorescence bead image taken from the 8
by 8 MMM with foci separation of 45 um at images at a depth of
150 pm. This image was trimmed to contain 6 by 6 sub-fields for
further image processing. Fig. 12(b) shows the processed image after
photon reassignment. As expected, due to the smaller foci separation
emission photons were scattered more into the adjacent neighboring
anodes of the MAPMT resulting in more pronounced ghost images.
We used our proposed approach to suppress the ghost images in such
a severe scattering case. From the processed image shown in
Fig. 12(b), we can visually observe that the ghost images are signifi-
cantly suppressed, and the remaining dim signal represents beads
situated in neighboring axial planes. Despite the same sample scat-
tering due to the smaller foci separation, emission photon scattering
strengths were 0.98 for 45 pm foci separation at 150 pm imaging
depth as compared to 0.88 for 85 pum foci separation at 135 um
imaging depth.

Mouse brain imaging in MMM with 45 pum foci separation. Finally,
we tested our approach for a mouse brain image taken from the
MMM system with 45 pm foci separation. For the mouse brain
imaging, a Thyl-GFP transgenic mouse®® was deeply anesthetized

with 2.5% Avertin (0.025 ml/g i.p.) and transcardially perfused with
PBS, followed by 4% paraformaldehyde. Its brain was dissected and
placed overnight in cold 4% paraformaldehyde. 300 um thick cor-
onal sections were sectioned with a vibrotome, then mounted and
coverslipped on microscope slides using adhesive silicone isolators
(JTR20-A2-1.0, Grace Bio-Labs, Bend, OR).

Fig. 13(a) shows the mouse brain image taken at 90 pm imaging
depth using the 8 by 8 MMM system with 45 um foci separation.
This image was trimmed to contain 6 by 6 sub-fields for further
image processing. It can be observed that the ghost images from
neighboring foci are substantial and these ghost images are intri-
cately mixed with the “real” image features. Furthermore, a uniform
background haze due the dense features of sample, as discussed
before, can also be clearly visualized. We processed the image by
using the same convergence criteria and the same method for estim-
ating the first guess of the scattering matrix and scattering strength
parameters. The processed image is shown in Fig. 13(b). Apparently,
the ghost images and background haze are simultaneously sup-
pressed from the processed image while the photons are assigned
back to the real image. Thus it provides better contrast and SGR.
Fig. 13(c) and (d) show the intensity line plots in the x- and y-
directions, along the dotted lines shown on Fig. 13(a).
Improvement of the signal and suppression of the ghost images
can be clearly observed from the intensity line plots. One particular
region highlighted in the images shows the overlap of ghost image
with true image features. The recovery of the image features while
simultaneously suppressing the ghost image can be observed in the
processed image. We further show other imaging parameters e.g.
strength of the neuronal signal at its original spatial location before
and after processing (Fig. 13(e)), and distribution of the neuronal
scattering matrix at the correct image anode location and as a func-
tion of the distance from this location (Fig. 13(f)).

Conclusions

MMM has the advantage of improved imaging speed critical for in
vivo imaging applications. However, due to scattering in turbid speci-
mens MMM images suffer from ghost images especially at higher
imaging depths. Previously, these ghost images have been processed
using the scattering coefficients acquired experimentally. However,
the experimental estimation requires frequent measurement with
different specimens, different locations, and at different imaging
depths. In this paper, we propose estimating the scattering coeffi-
cients for the photon reassignment process based on the maximum
likelihood (ML) estimation. This image post-processing method
increases the SNR and SGR of the final processed image by reassign-
ing the scattered photons to the original spatial locations, and also
avoids experimental calibration of the scattering matrix resulting in
greater experimental efficiency. It is also important to note that most
experimental methods for calibrating the scattering matrix can only
be performed on tissue phantoms or at a few locations in the spe-
cimen, so that inevitable errors in matrix estimation in other loca-
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tions will greatly degrade reassignment accuracy and introduce sys-
tematic error. This problem is completely avoided using our new
approach where the only a priori parameters used are the physical
properties of the optical system such as the objective numerical aper-
ture and the light wavelengths. We have shown the feasibility of our
approach with simulated results and confirmed that the algorithm
can estimate the scattering coefficients and reassign ghost images to
their correct location. We validated our approach with fluorescent
bead samples in the turbid medium, as well as with in vivo mouse
brain images. The processed images demonstrate that the scattered
emission photons are reassigned to their original spatial locations
resulting in higher signal. The SGR is improved by up to a factor of
10. The algorithm also confirms that shorter foci separation gener-
ates more crosstalk, and the emission photon scattering strength
increases as a function of imaging depth. To minimize the crosstalk

between foci and the resulting ghost images inherently, it is recom-
mended to adopt a large field of view objective lens and maximize
foci separation. However, in the case that only small field of view
objective lenses are available or the region of interest is small, our
proposed approach can be a good solution for image post processing
and image recovery. It is also interesting that our approach can
recover the scattering matrix and the emission photon scattering
strength at each image location allowing us to quantitative recover
tissue optical properties locally.
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