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Loebrich S, Nedivi E. The Function of Activity-Regulated Genes in the Nervous System. Physiol Rev 89: 1079–1103,
2009; doi:10.1152/physrev.00013.2009.—The mammalian brain is plastic in the sense that it shows a remarkable
capacity for change throughout life. The contribution of neuronal activity to brain plasticity was first recognized in
relation to critical periods of development, when manipulating the sensory environment was found to profoundly
affect neuronal morphology and receptive field properties. Since then, a growing body of evidence has established
that brain plasticity extends beyond development and is an inherent feature of adult brain function, spanning
multiple domains, from learning and memory to adaptability of primary sensory maps. Here we discuss evolution of
the current view that plasticity of the adult brain derives from dynamic tuning of transcriptional control mechanisms
at the neuronal level, in response to external and internal stimuli. We then review the identification of “plasticity
genes” regulated by changes in the levels of electrical activity, and how elucidating their cellular functions has
revealed the intimate role transcriptional regulation plays in fundamental aspects of synaptic transmission and
circuit plasticity that occur in the brain on an every day basis.

I. INTRODUCTION

Groundbreaking work in the 1960s and 1970s dem-
onstrated that brain plasticity is shaped by sensory input
during critical periods of development. Experimental ma-
nipulation of the sensory environment was shown to pro-
foundly affect neuronal morphology and receptive field
properties (120, 160, 274). Later studies demonstrated
that brain plasticity is not limited to development but
persists in adulthood and seems to be an inherent feature
of everyday brain function, critical for learning and mem-
ory, and the adaptability of primary sensory maps (re-
viewed in Refs. 31, 114, 116, 180, 278).

The understanding of neuronal adaptability in re-
sponse to the external environment is largely owed to the
discovery in other cell systems of signal transduction
pathways that couple extracellular cues to changes in

transcriptional activity. The study of tumor viruses and
their mechanism of action opened the door to our under-
standing of the cellular pathways that control cell growth
and proliferation, and in the mature nervous system me-
diate neuronal responses to electrical activity.

The first molecules shown to translate extracellular
signals to transcriptional programs that alter cell proper-
ties were transcription factors activated within minutes of
stimulation by growth factors and encoded by the cellular
counterparts of tumor virus oncogenes. Early studies of
the Rous sarcoma virus (RSV) revealed that its transform-
ing function resided in a single gene called src (25, 125,
210). In work for which they received the Nobel prize,
Bishop and Varmus (210) showed that the viral src gene,
v-src, was derived from a normal cellular protooncogene
c-src. Clues to the machinery of intercellular signaling via
growth factors and mitogens came when it was discov-
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ered that in normal cells protooncogenes function in sig-
naling roles that regulate cell growth and proliferation
(189, 256, 272). Cellular oncogenes were found to encode
proteins that represent all major components of the
growth factor response pathway: from the growth factor
sis (42, 62, 133, 134) and growth factor receptor erbB (64,
218), to the small G protein ras (59, 189, 256) or nonre-
ceptor tyrosine kinase src (25, 125, 210), and finally nu-
clear proteins, such as myc (3, 71, 105, 146), fos (55), or
jun (26, 88, 202).

It was known that application of growth factors like
platelet-derived growth factor (PDGF) leads to rapid ac-
tivation of gene expression despite the presence of pro-
tein synthesis inhibitors such as cycloheximide. These
rapid response genes were termed immediate-early genes
(IEGs) (46). Nuclear run-off transcription assays after
growth factor treatment revealed that the protoonco-
genes c-fos and c-myc were among the IEGs (96, 190).
Several facts implicated c-fos in regulation of gene expres-
sion. It was known to encode a nuclear protein (55)
associated with chromatin and capable of binding DNA
cellulose in vitro (226, 233). It turned out that c-fos and
c-jun are specific members of inducible gene families
whose products associate combinatorially to form
dimeric complexes that function as transcriptional ac-
tivators (54). These transcription factors, in turn, help
induce expression of second wave genes, termed de-
layed early genes.

Studies of the protooncogene c-fos also pioneered
the identification of cis- and trans-acting regulatory ele-
ments that play a role in controlling IEG induction (269).
The first operationally defined regulatory cis-element, the
serum response element (SRE), was initially mapped in
the promoter region of the c-fos gene (91, 219, 260). The
c-fos promoter was also found to contain a cAMP respon-
sive element (CRE) (243), common to cAMP-regulated
genes (185). The search for trans-acting protein factors
that bind to CRE identified a bZip transcription factor
termed CREB (CRE-binding protein) (111). The CREB
protein family was found to comprise more than 10 mem-
bers (102) able to heterodimerize in multiple combina-
tions and associate with Fos and Jun as heterodimers,
further fine-tuning the binding specificity of the complex
(101). The CREB gene gives rise to three main activating
isoforms: � (94), � (22), and � (111, 287). In addition,
alternative splicing appears to be a common feature of
CREB family genes and is used as a mechanism to gen-
erate both transcriptional activators and repressors. The
gene encoding the CREB homolog CREM (cAMP-respon-
sive element modulator) also shows IEG induction kinet-
ics, is subject to cAMP-dependent activation (183), and is
differentially spliced to encode both activators and re-
pressors of cAMP-dependent transcription (reviewed in
Ref. 152). The CREM products can heterodimerize with
each other, as well as with CREB, adding further com-

plexity to the regulation of cAMP-induced transcription
(154).

In 1989, Gonzalez and Montminy (94) demonstrated
that phosphorylation is a key mechanism in CREB regu-
lation. They showed that elevated cAMP levels led to
phosphorylation of CREB at a specific residue, serine-133.
Phosphorylation of CREB at this particular residue is a
prerequisite for its ability to trigger gene transcription in
trans, as was first assessed for the somatostatin gene
(94). The phosphorylated CREB protein associates with
CBP (CREB-binding protein) (45) and mediates interac-
tion with TFIIB, a major component of the transcription
machinery of the RNA polymerase II complex (150). Ter-
mination of CREB signaling can be achieved by dephos-
phorylation through protein phosphatase 1 (PP-1), or
PP-2a (201).

In parallel to in-depth studies of protooncogene
IEGs, such as c-fos, other studies greatly expanded the
pool of known inducible genes by administering different
stimuli, such as mitogens and phorbol esters (4, 155, 161,
253), leading to the more general view that gene transcrip-
tion in the nucleus is part of the cellular response pro-
gram to alterations in signaling from outside the cell. An
integral aspect of this cellular response program is the
biphasic nature of transcriptional activation, with IEG
induction closely followed by expression of a second
wave of delayed early genes. Another important feature is
that multiple signals and intracellular pathways can influ-
ence IEG transcriptional activation via an assortment of
cis- and trans-acting elements, and nuclear IEGs them-
selves comprise a diverse array of factors that can poten-
tially act combinatorially to differentially affect distinct
second wave gene sets.

II. TRANSCRIPTIONAL ACTIVATION OF

IMMEDIATE EARLY GENES IN THE

NERVOUS SYSTEM

Generalization of these concepts to neurons started
before they were fully understood and articulated, with dem-
onstration that treatment of pheochromocytoma (PC12)
cells with nerve growth factor (NGF) stimulates expression
of c-fos (56, 95, 149). Surprisingly, in this case c-fos induc-
tion was associated with events related to cell differenti-
ation rather than cell proliferation. This suggested that
the role of IEGs and their activation of a late response
transcriptional program could differ according to the
differentiation and physiological state of the stimulated
cell and was not necessarily restricted to proliferative
cells. In addition, c-fos expression in PC12 cells could
be induced by agents other than growth factors and
mitogens, including depolarizing stimuli and voltage-
gated calcium influx (187). These studies provided mo-
tivation for examining expression of c-fos and other
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IEGs in the brain, and their in vivo induction in re-
sponse to various neural stimuli, most notably seizure
paradigms.

Immunostaining revealed Fos-positive neurons
throughout the mouse and rat brain (65, 186). Basal levels
of c-fos expression could be robustly increased by admin-
istration of convulsants such as Metrazol (66, 186, 250) or
picrotoxin (231), or by electrical kindling (67). The IEGs
c-jun, zif/268, and junB were also found to be rapidly and
coordinately activated in seizure paradigms (231). This
led to the hypothesis that IEGs may play a part in normal
neuronal function and that their increased levels were
part of a programmed genomic response to intense stim-
ulation analogous to the genomic response of nonneuro-
nal cells to growth factors (231). However, while one
could speculate that convulsant-induced transcription
was merely an amplification of normal neuronal re-
sponses, it had yet to be shown that similar changes in
gene expression could be detected after more natural,
physiological levels of stimulation.

This critical point was subsequently addressed in the
late 1980s. Several studies demonstrated that changes in
IEG transcription factor mRNA levels could occur in re-
sponse to physiological stimuli. For example, water de-
privation resulted in Fos protein expression in hypotha-
lamic neurons known to be activated by dehydration
(232). Also, activation of small-diameter cutaneous sen-
sory afferents by noxious heat or chemical stimulation
rapidly induced c-Fos immunoreactivity (123) as well as
zif/268 gene and protein expression (276) in the superfi-
cial layers of the spinal cord dorsal horn. Activation of
low-threshold cutaneous afferents resulted in Fos-labeled
cells with a different laminar distribution. Neither type of
stimuli elicited Fos expression in the dorsal root ganglia,
nucleus gracilis, or ventral horn (123). Similarly, baseline
zif/268 mRNA levels in the visual cortex of rats was
significantly increased by exposure to light after dark-
adaptation and decreased after retinal action potential
blockade by monocular intravitreal injection of TTX,
whereas c-jun mRNA levels were unchanged by these
treatments (277). Interestingly, zif/268 mRNA baseline
levels were NMDA receptor dependent and dropped sig-
nificantly throughout cortex and hippocampus upon treat-
ment with the NMDA receptor antagonist MK-801,
whereas c-fos mRNA levels were unaffected by NMDA
receptor blockade.

These findings provided strong support for the idea
that endogenous IEG expression in the brain is a result of
normal synaptic activity and could therefore be influ-
enced by neuronal stimulation or activity blockade in a
pathway and stimulus specific manner. A side product of
these developments was the realization that if IEG acti-
vation was part of a neuronal response program to natural
stimuli, their expression could be used as a metabolic
marker for mapping functional pathways at a cellular

level (186, 232). There are excellent examples of success-
ful implementation of this strategy (16, 83, 98, 241, 294),
although there are concerns with strictly equating IEG
expression with neuronal activity (reviewed in Refs. 100,
141).

III. TRANSCRIPTIONAL ACTIVATION AS THE

BASIS FOR LONG-TERM SYNAPTIC

PLASTICITY

The realization that synaptic activity induces gene
transcription in mature neurons dawned as it was becom-
ing clear that synaptic activity could also drive long-term
changes in neuronal structure and function. This led to
the proposal that electrical and chemical stimuli that
produce long-term change in neurons, such as during
learning and memory, act through a mechanism analo-
gous to that of growth factors, namely, through second
messenger pathways leading to transcriptional activation
(reviewed in Refs. 21, 93).

It had been known for two decades that protein
synthesis inhibitors could affect memory retention in
mammals, first demonstrated in mice by intracerebral
injection of the protein synthesis inhibitor puromycin
(82). However, early studies monitoring behavioral per-
formance could not separate the cellular and subcellular
effects of the applied drugs from potential effects on
aspects of behavior such as attention and motivation.
Studies in Aplysia were the first to demonstrate that
transcriptional activation and subsequent protein transla-
tion were critical for learning-related synaptic plasticity
(184). In the intact animal, gently touching the siphon
leads to its retraction, as well as gill retraction. This
defense response could be sensitized by repeated stimu-
lation such that sensitization could last for minutes
(short-term sensitization, STS) to hours or days (long-
term sensitization, LTS) (33, 39). The circuitry that con-
trols this behavior in vivo involves sensory neurons from
the siphon that connect to motor neurons in the gill. The
sensory-motor-neuron synapses are modulated by facili-
tating interneurons driven by sensory neurons from the
tail (86). Unlike STS, LTS is seen only after repeated
stimulation and is mediated by serotonin (137). In this
system serotonin acts as a neuromodulator and activates
the cAMP-PKA pathway. Cocultured Aplysia sensory and
motor neurons recapitulate the STS and LTS seen in vivo,
with the long-term facilitation (LTF) of synaptic connec-
tions paralleling behavioral LTS in its requirement for
multiple spaced applications of serotonin (184, 224). In an
elegant study, Montarolo et al. (184) demonstrated that
application of protein or RNA synthesis inhibitors to the
Aplysia coculture system blocks LTF of sensorimotor
connections, but has no effect on short-term facilitation
(184). Application of the inhibitors during or immediately
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after stimulation with serotonin suppressed LTF, whereas
administration before or after the stimulation was inef-
fective. This is in line with behavioral studies in mammals,
where long-term memory is suppressed after administra-
tion of RNA or protein synthesis inhibitors during or
immediately after learning (82, 182, 223; reviewed in Refs.
58, 108, 179). The Aplysia studies clearly demonstrated
that long-term plasticity and its dependence on RNA and
protein synthesis derives from cellular properties that are
independent of the complex architecture or intact cir-
cuitry of the living animal.

Hints that transcriptional activation mediated by
CREB is essential for synaptic plasticity also came from
the Aplysia culture system, since bath application of
cAMP could be used in place of serotonin to induce LTF
(234). Administration of oligonucleotides containing CRE
sequences resulted in selective loss of LTF, but not STF in
this preparation (57), and repeated serotonin application
was shown to induce CREB phosphorylation and activa-
tion of CREB-dependent gene transcription (136). Mean-
while, studies in PC12 cells revealed that the CRE element in
the c-fos promoter was one and the same as the calcium-
responsive element (CaRe), and CREB becomes phosphor-
ylated at serine-133 in response to both membrane depolar-
ization and elevation of intracellular Ca2� levels, subse-
quently leading to transcriptional activation of the c-fos gene
(243). This study also demonstrated that cAMP and Ca2�

signaling had synergistic effects on CREB-dependent c-fos

transcription in vitro, suggesting that these two signaling
pathways converge on the CREB protein to regulate activity-
dependent transcription in neurons.

In vertebrates, studies of long-term synaptic plastic-
ity at the cellular and synaptic level mainly focused on the
hippocampus, a region of the brain known for its impor-
tance in learning and memory. In 1973 Bliss and Lømo
(24) reported the phenomenon of long-term potentiation
(LTP), whereby high-frequency stimulation of the per-
forant path produces enhanced transmission in the den-
tate gyrus lasting hours to weeks. Similar to behavioral
memory, LTP in hippocampal slices has distinct temporal
phases, an early phase lasting 1–3 h after tetanic stimula-
tion, and a persistent late phase lasting at least 8 h (late
LTP, L-LTP) (227). Like hippocampal-dependent learning,
L-LTP in vitro and in vivo requires repetitive stimulation
and is dependent on coincidence detection by the NMDA
receptor (49, 188). These attributes and the fact that it can
be induced in brain slices in vitro have contributed to the
emergence of LTP as the premier synaptic model of mem-
ory in the hippocampus, and more generally as a model
for activity-dependent synaptic plasticity in the vertebrate
brain (23).

Two groups that first monitored the expression of
IEGs in response to LTP (48, 276) found that high-fre-
quency stimulation of the perforant path in rat hippocam-
pus at an intensity and frequency sufficient for LTP induc-

tion also markedly increased zif/268 mRNA in the dentate
gyrus. Other IEG mRNAs, such as c-fos, c-jun, and junB,
were less consistently increased under the same experi-
mental conditions, in line with earlier findings (63). While
Cole et al. (48) found that stimulation of convergent in-
hibitory synaptic inputs known to block LTP also blocked
IEG induction, Wisden et al. (276) using a similar protocol
but slightly different placement of the stimulating elec-
trode, saw a bilateral increase in mRNA levels of zif/268,
c-fos, and c-jun alike. This finding indicated that upregu-
lation of IEG mRNA is not always indicative of LTP (276).
However, induction of LTP was always accompanied by
concomitant zif/268 mRNA expression. The fact that zif/

268 mRNA upregulation and LTP induction by high-fre-
quency stimulation both require similar stimulus condi-
tions, including activation of the NMDA receptor (48),
argued that they were regulated by the same synaptic
mechanisms. Consistent with this, induction of L-LTP in
hippocampal slices produced either by tetanic stimulation
or application of a membrane-permeable cAMP analog
could be blocked by inhibitors of protein synthesis or
transcriptional blockers (85, 118, 200). The similarity to
the Aplysia system was further established with the dem-
onstration that stimuli that induced L-LTP in CA1 of the
hippocampus could also induce CRE-mediated gene ex-
pression (126) and CREB phosphorylation (60). L-LTP-
induced gene expression could be blocked by PKA inhib-
itors or L-type Ca2� channel blockers (117), again impli-
cating CREB as a convergence point for both cAMP and
Ca2� signaling.

The first conclusive test of whether CREB was re-
quired for memory was performed in Drosophila, where
genetic screens for learning and memory mutants identi-
fied several mutants with defects in genes encoding key
enzymes that regulate intracellular cAMP levels (re-
viewed in Ref. 266). Inducible overexpression of a domi-
nant negative truncated CREB protein containing the
CRE-binding domain but lacking transactivation activity
interfered with the formation of long-term memory if
induced prior to training, without affecting short-term
memory (290). Attempts to show the requirement for
CREB in long-term memory using a knockdown approach
in mice was complicated by the existence of multiple
CREB isoforms (reviewed in Ref. 246). Initial results from
analysis of CREB� �� knockout mice were consistent
with the Aplysia and Drosophila studies in that short-
term memory was unimpaired whereas long-term mem-
ory was severely compromised (28), despite upregulation
of the CREB �-isoform in these mutants. In contrast, Gass
et al. (90) found that CREB� �� knockout mice with a
different genetic background did not show deficits in
social transmission of food preference, nor in dentate
gyrus or CA1 LTP in slice preparations. A strain in which
all CREB isoforms were reduced showed clear behavioral
deficits in the Morris water maze (90), although concerns
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remain that the mutant mice may be impaired in behav-
ioral flexibility, rather than spatial memory. Another
study used conditional CREB knockouts and found both
hippocampal LTP and long-term depression (LTD) to be
normal (12). Also, learning and memory in the water maze
task were not grossly affected. Surprisingly, the mutant
mice showed impairment in a conditioned taste aversion
learning task, thought to be hippocampus independent.
These studies cast a controversial light on the findings of
CREB deletion work in mammals and call to mind that
gene dosage, genetic background, and compensatory
mechanisms (22, 122) may confound the interpretation of
such findings.

Mouse knockout studies of other IEG transcription
factors linked to activity-dependent gene transcription
and synaptic plasticity further validated the view that the
cellular underpinnings of activity-dependent synaptic plas-
ticity and learning and memory were one and the same.
Zif/268 mutant mice (259) that lack the Zif/268 protein
were found to be defective in L-LTP, indicating that zif/

268 mRNA expression is not just correlated with LTP, but
is in fact required for its expression (135). Long-term
memory was also impaired in zif/268 mutant mice when
assessed by a variety of behavioral tests, including object
recognition and spatial memory tasks. Genetic evidence
for a role of c-Fos in memory formation came from c-fos

knockout mice that displayed impaired spatial memory in
a water maze task (213), although it could not be ruled out
that this was partially due to developmental abnormalities
in the c-fos mice (132).

Thus, over the course of 15 years, three model
systems, Aplysia, Drosophila, and mouse, have con-
tributed to our understanding of how behavioral plas-
ticity, such as is manifested during learning and mem-
ory, derives from activity-dependent plasticity at the
synaptic level and is mediated by transcriptional acti-
vation of IEG transcription factors. The transcription
factor CREB was key to establishing this sequence and
emerged as a potential convergence point for two major
signaling pathways communicating extracellular sig-
nals to the neuronal nucleus: depolarization-induced
Ca2� signaling by ionotrophic glutamate receptors, and
cAMP linked catecholamine or growth factor signaling.
The importance of these pathways for activity-depen-
dent neuronal function and malfunction cannot be
overstated and has recently been comprehensively re-
viewed by Greenberg and colleagues (47, 80).

IV. SEARCH FOR ACTIVITY-REGULATED GENES

The above studies lent credence to the idea that in
postmitotic neurons IEG activation is a normal response
to synaptic activity and the first step towards long-term
activity-dependent plasticity. However, they all focused

on IEGs, such as c-fos, c-jun, or zif/268, identified in
screens for rapid response to growth factors. It was clear
that to fully understand the activity-dependent genetic
programs utilized by neurons in the mammalian brain,
one had to screen for genes that were induced by neuro-
nal activity, rather than by growth factor stimulation.

In the early 1990s, several groups set out to identify
genes that are regulated by changes in activity and could
therefore be relevant to activity-dependent neuronal plas-
ticity (196, 222, 283). While the differential screening and
subtractive hybridization methods that constituted the
state of the art at the time may seem outdated, these
screens laid the conceptual groundwork for later screen
design using more up-to-date methods. In addition, their
combined output provided a significant fraction of the
activity-regulated genes whose cellular function has been
characterized in the context of synaptic plasticity, there-
fore affording us a first glimpse of the cellular machinery
activated by IEGs in response to neuronal activity.

In screening for activity-regulated genes, as in any
differential screen, a critical aspect of screen design is
selection of the tissues for comparison. The greater the
number of differences between two tissue sources, the
more difficult it is to select from the cloned genes those
that are relevant to the specific difference of interest.
The more complex a tissue source, containing multiple
cell types or multiple functional regions, the more differ-
ences will likely be detected. For these reasons it is best
to compare cell populations that are as similar and homo-
geneous as possible. This consideration independently led
all three groups to the hippocampus, a region associated
with learning and memory, known to undergo cellular
plasticity, and relatively uniform regarding cell type, com-
pared with cortex or whole brain. The choice of adult
rather than developing tissue circumvented the confound-
ing influence of developmental change. They all used
seizure to induce strong, synchronized neural activity
with protocols previously shown to result in IEG induc-
tion in the brain. Many of the activity-regulated genes
identified using the seizure protocol were later demon-
strated to be induced by less severe stimulation (see
Table 1), such as during LTP (110, 166, 196, 222, 263, 283,
285, 286), and by physiological stimuli, for example, visual
input (30, 51, 157, 170, 195, 263, 283, 285), suggesting their
induction was not specifically seizure related, but was
likely to occur in the brain with day to day levels of
activity.

The Kuhl and Worley screens focused on IEGs by
applying protein synthesis inhibitors prior to stimulation
(222, 283). Kuhl and colleagues (222) identified, in addi-
tion to c-fos and zif/268, five independent genes upregu-
lated by metrazole-induced seizures, that they termed
brain activity dependent (BAD) 1 through 5. BAD1, BAD2,
and BAD3 were novel genes not further examined. BAD4
encoded a secreted protein of unknown function, TIS21,
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also induced by NGF (29). BAD5 turned out to be the
tissue-type plasminogen activator (tPA), an extracellular
protease known to activate the protease plasmin by pro-
teolytic cleavage of plasminogen (262). Further analysis
showed that tPA mRNA is upregulated in electrophysio-
logical paradigms that induce LTP in hippocampus and
that tPA induction relies on the NMDA receptor (222).
Consistent with a potential role in synaptic plasticity, tPA
is induced in the cerebellum in response to learning (239),
and tPA inhibitors suppress the expression of late LTP
(13). Follow-up screens by the Kuhl group identified
arg3.1, coding for a dendritically enriched protein (166)
also identified by the Worley (170) and Nedivi groups
(110).

The screen performed by Worley and co-workers
proved even more fruitful thanks to the use of subtractive
hybridization, yielding 15 novel IEGs (153), approxi-
mately half of which encoded transcription factors, in-
cluding a novel zinc finger protein Egr3, a Zif/268 homolog
(285). The MECS paradigm also identified a number of
specifically upregulated IEGs with predicted cellular func-
tions unrelated to transcriptional regulation, including
COX-2, an inducible form of prostaglandin H synthase
(283); Rheb, a novel Ras-related small GTP-binding pro-
tein (286, 289); Arc, a novel cytoskeleton-associated pro-
tein enriched in dendrites (170) (also termed Arg3.1 by
Link et al., see above); Narp, a novel member of the
pentraxin family of secreted lectins (263); Homer, a PDZ

TABLE 1. IEG summary

Protein IEG Stimulus Protocol Plasticity Paradigm Cellular Function

tPA Yes Seizure (222), LTP (222), learning
(239)

L-LTP (13) Extracellular matrix degradation (262),
synaptic growth (13)

MHC I No Seizure (5l), sensory (51) LTP (121), LTD (121) Competitive structural refinement (121)

Intracellular signaling

SNK Yes Seizure (142), LTP (142),
electroconvulsive therapy
(199), epileptiform activity
(238)

Synaptic scaling (236, 238) Kinase, synapse weakening (236, 238)

RGS2 Yes Seizure (128), LTP (128), drugs
(32, 128)

ND G protein signaling (20, 128)

CPG16 No Seizure (196) ND S/T-kinase (110, 247), cortical architecture?,
neuronal migration?

Rheb Yes Seizure (286), LTP (110, 286),
sensory (195)

ND Ras-Raf signaling (289)

Extracellular signaling

BDNF No Seizure (5, 74, 110, 131, 199 292),
LTP (212), sensory (41)

LTP (78, 138, 148, 211) Neurite outgrowth (15), neuronal survival
(113), competitive structural refinement
(34), axonal and dendritic arborization
(129, 176-178)

COX-2 Yes Seizure (5,110,199, 283), LTP
(283), neuronal activity (283),
stress (283)

ND Arachidonic acid metabolism (248),
transcellular signaling (109)

Narp Yes Seizure (263), LTP (263), sensory
(263)

ND Pentraxin (263), neurite outgrowth (263),
AMPAR clustering (203), excitatory
synaptogenesis (181, 203, 245)

CPG15 Yes Seizure (196), diabetes (139),
ischemia (104), axotomy (258),
sensory (107, 157, 195)

ND Dendritic outgrowth (198), axonal
outgrowth (37), synapse maturation (37,
87), neuronal survival (221)

Arcadlin Yes Seizure (284), LTP (284) ND Cadherin (284, 288), endocytosis of N-
cadherin (288), spine turnover (288)

Synaptic machinery

Arc Yes Seizure (166, 170), LTP (110, 166,
170), sensory (170)

Synaptic scaling (244), L-LTP
(215), LTD (215), mGluR-LTD
(209, 273), memory
consolidation (215, 244)

AMPA receptor internalization (44, 215, 228)

Homer-1a Yes Seizure (30, 196), sensory (30,
195)

ND mGluR clustering (30, 280), signaling (9, 77),
and surface expression (8, 10, 229);
coupling of mGluRs to the PSD (264),
IP3R (265); TRPC1 gating (291); AMPAR
cycling (169)

CPG2 No Seizure (196), sensory (195) ND Glutamate receptor endocytosis (53)

ND, not determined. Reference numbers are given in parentheses. See text for definitions.
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protein that binds metabotropic glutamate receptors (30)
(also termed CPG22 by the Nedivi group, Ref. 195), and
Arcadlin, a novel cadherin-like molecule (284). These are
further discussed below.

The Nedivi screen also benefited from enrichment by
subtractive hybridization and was further enhanced by a
highly sensitive differential screening procedure (110,
196). In contrast to the above-mentioned screens, it was
performed without protein synthesis inhibitors. As a re-
sult, this screen identified a large number of candidate
plasticity genes (CPGs) induced in the hippocampal den-
tate gyrus in response to kainic acid seizure, including
both IEGs and late response genes. The authors initially
reported 52 genes, listing 17 with known cellular function,
among them, the IEG transcription factors c-Jun, Zif/268,
c-Fos, and CREM (196). Continued screening eventually
expanded this number to 362 upregulated CPGs, 66 of
them known, and 7 novel CPGs with motifs predicting
their putative function (110). Among the candidate genes
there was a clear representation of membrane-, vesicle-,
and synapse-related proteins.

Even before characterization of the novel “plasticity”
genes identified in these screens, perusing the cellular
functions of known genes newly recognized in the con-
text of a seizure response, provided some strong clues
regarding the cellular response of neurons to synaptic
activity. It became clear that the nervous system employs
a wide array of genes in response to activity, with the
potential of affecting multiple cellular properties, ranging
from process outgrowth and rearrangement of the cy-
toskeleton and the extracellular matrix, to changes in
neuronal excitability and modulation of synaptic
strength.

The Nedivi and Worley screens also allowed a pre-
liminary estimate of the number of genes that may be
activity-regulated in the brain. Considering that CPGs
comprised 5% of the screened clones, and a complexity of
�20–30,000 brain RNA species (158), the total number of
activity-regulated genes was estimated at 500–1,000 (196).
Exhaustive screening of the libraries prepared after
MECS stimulation in the presence of protein synthesis
inhibitors generated an estimate of 30–40 independent
activity-regulated IEGs, of which perhaps 10–15 were
transcription factors (153). These estimates likely repre-
sent lower bounds, limited by the finite sensitivity of the
screens.

A conceptually different screen for activity-regulated
genes in this early generation was not based on seizure
activity, but rather on genes downregulated by activity
blockade during development (51). This screen identified
the immune molecule class I major histocompatibility
complex (MHC) antigen as an activity-regulated gene and
showed for the first time that the mRNAs for CD3�, a
component of the MHC I receptor complex, and for �2-
microglobulin, a cosubunit of the MHC I complex, are

present in the central nervous system (CNS) (51). Hence,
molecules formerly described as mediating cell-cell rec-
ognition in the immune system were shown to be regu-
lated by activity in the central nervous system. In mutant
mice lacking functional MHC I signaling, developmental
refinement of connections between the retina and central
targets is incomplete, hippocampal LTP is enhanced, and
LTD is absent (121).

Approximately 10 years after these first screens, with
the advent of microarray chip technology, a second wave
of studies attempted to provide a more comprehensive
view of transcriptional changes associated with enhanced
activity. Since the microarray approach does not require
the amount of tissue necessary for conventional differen-
tial screening or subtractive hybridization, it allows the
use of less efficient, but more specific stimulation proto-
cols, resulting in a greater diversity of approaches. Some
chip screens were similar to the earlier differential screens,
using hippocampal tissue after an in vivo seizure-like stim-
ulus (5, 72, 84, 199), or hippocampal slices after an LTP-
inducing stimulus (208). Other screens made use of cultured
cortical neurons treated with different pharmacological
agents (115, 147, 279). Whether the stimulus was seizure,
LTP, NMDA application, or other pharmacological manipu-
lations that affect activity, consensus groups were identified
for many of these screens. Two common groups were those
related to signal transduction and transcriptional activation.
Effector gene categories were more varied between the
different screens but did contain genes seen in earlier
screens representing neuritogenesis, synaptic transmission,
and cytoskeletal regulation. Interestingly, a genome-wide
screen for seizure-induced transcriptional changes in the
Drosophila nervous system also yielded a crop of tran-
scripts, suggesting activity-dependent modulation of mem-
brane excitability and synaptic transmission, as well as cy-
toskeletal architecture and synaptic growth (97).

Most of the above-mentioned screens partially vali-
date their positives at the transcript level, but the signif-
icance of each individual hit to neuronal plasticity can
only be assessed after a characterization of its cellular
function in this context. This holds true for a second type
of recent microarray screens that did not target the gen-
eral category of activity-regulated genes, but focused on
gene expression changes during developmental activity-
dependent plasticity in the visual system (151, 172, 261).
Interpretation of these data is even more complex due to
the confounding effects of age-specific gene regulation,
multiple developmental events occurring concurrently
during the period examined, and the difference in out-
come of the deprivation protocols used to manipulate
activity. While there is some overlap with genes previ-
ously identified in response to more general seizure ma-
nipulations, especially in the transcription factor cate-
gory, for the most part, the visual system development
screens have yielded a pool of genes distinct from each
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other and from other screens for activity-regulated genes.
It is too early to interpret the mechanistic significance of
these differences.

Microarray screens have some major limitations:
they are only capable of interrogating a predefined set of
sequences, and they report relative, rather than absolute,
abundance of a given transcript. In addition, because they
are based on sequence-specific probe hybridization, they
are particularly vulnerable to false positives due to probe
cross-reactivity. Lately, newer techniques that are less
susceptible to these problems are replacing gene expres-
sion microarray screens (for overview, see Ref. 50). Serial
analyses of gene expression (SAGE) has been used to
identify genes regulated in response to NGF in PC12 cells
(7) and to identify candidate early target genes of JNK or
AP-1 in Drosophila (76). SAGE technique has also been
combined with chromatin immunoprecipitation (ChIP)
for serial analysis of chromatin occupancy (SACO) in a
genome-wide screen for CREB target sites (127). Compar-
ing the SACO results with those obtained from affymetrix
chips with and without cAMP stimulation, the authors
validated their results and greatly expanded our view of
the CREB regulon. Deep sequencing, a new, unbiased
approach for identifying active transcripts (254), allows
the detailed detection of multiple splice variants from a
single gene, a goal notoriously difficult to achieve with
conventional hybridization techniques. Although their ap-
plication with respect to the activity-regulated gene pro-
gram in the nervous system is yet to come, the advent of
these powerful screening technologies holds promise for
more comprehensive approaches to identification of ac-
tivity-regulated genes.

In summary, forward genetic screens for activity-
regulated genes have advanced our thinking regarding the
cellular changes set in motion by synaptic activity. While
signaling from the synapse to the nucleus utilizes tradi-
tional second messenger pathways similar to those acti-
vated by growth factors, inducing many of the same tran-
scription factor IEGs, the cellular response to these two
types of stimuli clearly diverges at the transcriptional
level. Transcriptional programs initiated by synaptic ac-
tivity are dominated by gene products that directly im-
pinge on neuronal structure and function, with particular
emphasis on proteins that promote process outgrowth
and differentiation, or interface with the synaptic machin-
ery.

V. IMPLEMENTATION OF ACTIVITY-

DEPENDENT NEURONAL TRANSCRIPTIONAL

PROGRAMS

Forward genetic screens have yielded a large crop of
activity-regulated genes with cellular functions described
in nonneuronal contexts or in contexts of early neural

developmental. While these gave a feel for what kind of
cellular processes may be recruited in response to synap-
tic activation, few were followed up and studied mecha-
nistically in the context of cellular or behavioral plastic-
ity. Below we focus on activity-regulated genes that have
been characterized sufficiently to yield insight into the
cellular mechanisms recruited in response to altered lev-
els of neuronal activity.

A. Intracellular Signaling Molecules

As might have been anticipated by analogy to the
growth factor response pathway, two major classes of
activity-regulated genes encode transcription factors and
signaling proteins. In both classes there are “generic”
members in common with the response pathways to ex-
tracellular stimuli unrelated to synaptic activity. Also
identified were novel transcription factors and signaling
proteins, predominantly kinases (168, 247), that seem
unique to synaptic stimulation. We will not elaborate
further on the role of activity-dependent transcription
factors in synaptic plasticity, as this topic is comprehen-
sively discussed in a number of excellent recent reviews
(2, 47, 80). We discuss several candidate plasticity genes
in the signaling molecule category newly investigated in
the context of activity-dependent neuronal response path-
ways.

1. SNK

The serum-induced kinase SNK, also called Plk2, be-
longs to the family of pololike kinases, first identified in
Drosophila (168, 255). In mammals, three genes encode
pololike kinases that have been described in the context
of proliferating cells, and their function in oncogenic
transformation is well characterized (for review, see Ref.
69). In postmitotic neurons, SNK was found to be upregu-
lated in response to various stimuli, including pharmacolog-
ically induced seizures, LTP-producing high-frequency stim-
ulation (142), electroconvulsive seizure therapy (199), and
epileptiform activity (238). Early studies showed that SNK is
activity-regulated both at the mRNA and protein levels, with
the most robust induction in hippocampus, amygdala, and
the cerebral cortex. SNK protein is localized to soma and
dendrites (142) and in particular to dendritic spines (6, 206).

While an early study demonstrated a direct in vitro
interaction of SNK with the Ca2�-binding protein Cib
(142), an integrin �IIb binding factor (192), the relevance
of this interaction to activity-dependent plastic changes in
the nervous system remains unclear. Evidence for a role
in synaptic plasticity came from a study demonstrating
SNK interaction with spine-associated Rap GTPase acti-
vating protein (SPAR) (206). SPAR is part of the postsyn-
aptic scaffolding associated with PSD95, as well as the
NMDA receptor (207), and was found to regulate den-
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dritic spine morphology by reorganizing the F-actin cy-
toskeleton (207). SNK inhibits SPAR-mediated cytoskel-
etal reorganization, inducing loss of SPAR, as well as
PSD95 and even presynaptic Bassoon clusters, suggesting
it may play a role in weakening or possibly eliminating
synaptic contacts (206). The molecular mechanism by
which SNK phosphorylation of SPAR leads to SPAR loss
is through association with the multisubunit E3 ubiquitin
ligase complex SCF (�-TRCP), which directs SPAR to-
wards proteasome-mediated degradation (6).

Two recent studies suggest a requirement for SNK in
synaptic scaling. Disruption of SNK function using a dom-
inant-negative approach abolished synaptic scaling in cul-
tured hippocampal neurons (236). Eliminating CDK5
function has a similar outcome, since CDK5-mediated
phosphorylation of SPAR is a prerequisite for its recogni-
tion by SNK (6, 236). Other experiments in organotypic
slice cultures showed that SNK is required for the down-
regulation of membrane excitability in pyramidal neu-
rons. Thus SNK loss of function results in a persistent
potentiation of synaptic strength which precludes the
expression of LTP (238). Interestingly, SNK seems to
regulate itself negatively, likely through autophosphory-
lation, and is therefore capable of limiting its own actions
over time (144). Taken together, these data demonstrate
that SNK is an activity-induced molecule that plays a role
in homeostatic synaptic plasticity. The potential substrate
specificity of the SNK kinase and the fact that not every
spine head contains SPAR in detectable quantities (207)
warrants consideration of a synaptic tagging-like mecha-
nism for SNK action (237).

2. RGS2

The RGS gene family (regulators of G protein signal-
ing) encodes proteins that accelerate the intrinsic GTPase
activity of heterotrimeric G protein �-subunits, thus func-
tioning to dampen G protein-mediated signal transduction
(20). In contrast to other members of the mammalian RGS
family, RGS2 is specifically induced by neuronal activity,
with induction characteristics of an IEG (32, 128). Early
studies using single turnover assays performed in solution
indicated that RGS2 functions as a GTPase-activating pro-
tein (GAP) selectively for Gq� subunits. However, RGS2
also stimulates Gi� when G protein is reconstituted in
vesicles together with the muscarinic acetylcholine recep-
tor (mAChR) (128). The same study showed that RGS2
inhibits both M1- and M2-dependent mAChR-mediated
activation of mitogen-activated protein (MAP) kinase,
consistent with its GAP activity for both Gq� and Gi�
subunits, and indicating how RGS2’s function may be
integrated in activity-induced downstream signaling path-
ways.

Behavioral analyses of RGS2 knockout (KO) mice
revealed increased anxiety and reduced male (but not

female) aggression, although no other cognitive or motor
deficits were observed (205). These findings were par-
tially supported by a genetic trait analysis of outbred mice
that identified the RGS2 locus as a quantitative trait gene
influencing anxiety (282). Anatomically, RGS2 KO mice
display reduced apical and basilar spine density in Golgi-
Cox stained hippocampal slices and impaired basal elec-
trical activity in hippocampus CA1 neurons seen as a
reduction in the input-output relationship. Surprisingly,
LTP in CA1 neurons of these mice was normal (205). A
recent study looking more closely for circuit deficits that
potentially underlie the behavioral anxiety seen in the
RGS2 KO mice examined RGS2 KO neurons in culture and
found that in the absence of RGS2 paired-pulse ratios
were increased, while expression of RGS2 in either wild-
type or RGS2�/� background led to reduced paired-pulse
ratios (103). Pharmacological analyses demonstrated that
this RGS2 action is specific to Gi/o trimeric �-subunits and
that Gq pathways are not involved. Consistent with its
effects on paired-pulse facilitation, the authors show that
RGS2 increases presynaptic release probability by in-
creasing local intracellular Ca2� concentrations, likely by
downregulating the Gi/o-mediated inhibition of presynap-
tic Ca2� channel activity (103). Taken together, these
studies establish a role for RGS2 in short-term synaptic
plasticity, that may underlie its contribution to anxiety-
and aggression-related behaviors.

B. Extracellular Signaling Molecules

Activity-dependent signaling is not confined within
the cell. A significant fraction of the novel activity regu-
lated genes examined in detail encode extracellular mol-
ecules that mediate intercellular communication. We are
accustomed to thinking of extracellular signaling as me-
diated by diffusible molecules that act systemically or in
controlled gradients across long distances. Some of the
extracellular activity-dependent gene products, such as
brain-derived neurotrophic factor (BDNF), clearly act in
this manner too. However, an unusual aspect of this cat-
egory as a whole is that their signaling can also be dis-
tinctly localized to the synaptic vicinity.

1. BDNF

BDNF was first isolated on the basis of its ability to
support the survival of, and process outgrowth from, CNS
neurons (15, 113). It was thought to act with other neu-
rotrophins to promote neuronal survival and differentia-
tion during nervous system development (reviewed in
Ref. 249). However, expression of neurotrophins, includ-
ing BDNF, in the adult brain, particularly in the hippocam-
pus (11, 75, 112, 171), suggested they may play additional
roles in regulating neuronal function (reviewed in Ref.
225). Shortly thereafter it was shown that transcription of
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the BDNF gene is strongly regulated by experimentally
induced seizure (74, 131, 292), as well as by LTP (212) and
physiological levels of activity such as exposure to light
(41). Not surprisingly, BDNF also surfaced in screens for
activity-regulated genes (5, 110, 199).

The potential relevance of BDNF function to synaptic
plasticity was bolstered by studies manipulating its levels
in vivo. Intracerebral infusion of BDNF or NT4/5, which
share TrkB as their common receptor (130), inhibited
formation of ocular dominance columns in the developing
visual cortex of cats (34). Other known neurotrophins
such as NGF and NT3 did not show these effects, hinting
that the TrkB receptor specifically is involved in mediat-
ing competition-driven segregation of thalamocortical af-
ferents into eye-specific domains. In a later complemen-
tary study, Cabelli et al. (35) reduced endogenous BDNF
levels by infusing visual cortex at the peak of ocular
dominance segregation with soluble fusion proteins that
combine the TrKB receptor extracellular domain with IgG
(TrkB-IgG receptor bodies) and act as scavengers of TrkB
ligands (242). After intraocular injection of 3H-labeled
proline and subsequent visualization by autoradiography,
it became clear that ocular dominance stripes were ab-
sent near the infusion cannula (35).

Involvement of BDNF in the synaptic plasticity par-
adigm of LTP was first demonstrated in mice with tar-
geted disruption of the BDNF gene. Hippocampal slices
from BDNF knockout mice showed significantly reduced
LTP in the CA1 region of the hippocampus (148, 211).
Treatment of these slices with recombinant BDNF en-
tirely rescued deficits in LTP as well as in basal synaptic
transmission. Thus synaptic impairments in the knockout
mice are not secondary to developmental defects but due
to a direct requirement for BDNF during synaptic function
and plasticity (211). These findings are consistent with
studies showing that TrkB-IgG receptor bodies reduce the
synaptic response to tetanic stimulation and diminish the
magnitude of LTP in adult hippocampal slices, while ex-
ogenous BDNF promotes LTP induction in young slices
(78). Additional studies showed that application of BDNF
to hippocampal slices from young adults elicited a sus-
tained enhancement of synaptic transmission that mim-
icked, but did not occlude, high-frequency induced LTP
(138). These combined studies strongly indicate an acute
role for BDNF in hippocampal synaptic plasticity.

Another aspect of neuronal function influenced by
BDNF is structural plasticity of axonal and dendritic ar-
bors. Application of BDNF to organotypic slice cultures of
developing neocortex resulted in a rapid increase in
length and complexity of pyramidal neuron dendrites
(178). Conversely, removing endogenous BDNF (and
NT4–5) in this system using TrkB-IgG receptor bodies
showed the requirement for BDNF in the growth and
maintenance of pyramidal cell dendritic arbors (177). Al-
though evidence for its effect on axons is less extensive

than for dendritic growth, application of BDNF has also
been shown to enhance arborization of retinal axons in
vitro (129). Inhibition of spontaneous neuronal activity,
synaptic transmission, or L-type calcium channels all pre-
vents the positive effect of BDNF on dendritic arboriza-
tion (176), suggesting that BDNF may serve to link levels
of synaptic activity with process outgrowth and activity-
dependent structural plasticity.

2. Narp

Narp, neuronal activity-regulated pentraxin, is a
member of the pentraxin family of secreted proteins.
Consistent with the conservation of its Ca2� and carbo-
hydrate binding domains, Narp has the biochemical prop-
erties of a calcium-dependent lectin (263). Since pentrax-
ins are structurally conserved across species (73), and the
plant-derived lectin concanavalin A promotes neurite out-
growth in mammalian neurons (163), Narp was tested in a
heterologous expression system where COS-1 cells trans-
fected with a Narp expression construct were cocultured
with cortical explants. Neurons, but not glia, from the
explant migrated out to the surrounding area and exhib-
ited exuberant process outgrowth (263). These effects of
Narp were not apparent when explants were cultured on
collagen, but were most obvious on a less supportive
substrate, such as poly-L-ornithine. While it is possible
that Narp is simply a better substrate for growth than
poly-L-ornithine, its potency in promoting outgrowth is in
the nanomolar range, unlike substrates such as NCAM or
laminin, and more comparable to neurotrophins and
growth factors (159). The growth-promoting effects of
plant lectins, also effective at nanomolar concentrations,
are attributed to binding of specific receptors on the
neuronal surface (164). Like other lectins, Narp is multi-
valent, and its binding efficacy as well as physiological
activity may be dependent on this multivalency (263).

Heterologous expression in HEK 293 cells revealed
that secreted Narp binds to itself and forms large aggre-
gates that can trap cotransfected GluR1 subunits (203). A
closer look at Narp distribution in the mammalian ner-
vous system shows it is predominantly localized to aspiny
neurons, where it resides almost exclusively at GluR1-
positive excitatory synapses on the shaft of dendrites,
whereas it is largely absent from glutamatergic synapses
on spiny neurons, such as pyramidal cells. Ultrastructural
analyses detected Narp at both pre- and postsynaptic
terminals and in the synaptic cleft as well (203). Native
Narp in brain is part of a pentraxin complex with neuronal
pentraxin 1 (NP1, described in Ref. 235). Narp and NP1
form quarternary complexes covalently linked by disul-
fide bonds. Whereas Narp is readily induced in neuronal
activity paradigms (263), NP1 is constitutively expressed
and is nonresponsive to elevated activity (281). Compared
with Narp, NP1 has only minor synaptogenic activity
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(281). Thus Narp/NP1 ratios affect the synaptogenic effi-
cacy of pentraxin complexes. Since Narp levels are di-
rectly coupled to synaptic activity, excitatory synaptogen-
esis is dynamically regulated by Narp through its contri-
bution to pentraxin complex composition. A third
member of the neuronal pentraxin family is the neuronal
pentraxin receptor (NPR). NPR is physically associated
with Narp and NP1, and like Narp and NP1 it binds AMPA
receptors and contributes to synaptogenesis (61, 245).
NPR possesses a transmembrane domain that likely teth-
ers a pentraxin complex containing all three neuronal
pentraxins to the cell membrane. Interestingly, both NP1
and NPR are axonally derived and are secreted exclu-
sively by excitatory cell axons at their contact points with
interneurons (181, 245). Overexpression of Narp in neu-
rons leads to an increase in the number of excitatory but
not inhibitory synapses (203). These data taken together
support a model in which Narp facilitates excitatory syn-
aptogenesis by acting as an extracellular aggregating fac-
tor for AMPA receptors, specifically on dendritic shafts
(181, 203, 245).

However, in response to activation of group 1 metabo-
tropic glutamate receptors, the extracellular metallopro-
tease TACE releases a soluble form of NPR and the other
neuronal pentraxins from the transmembrane tether, allow-
ing their trafficking to endosomes together with attached
AMPA receptors, thereby contributing to the downregula-
tion of synaptic AMPA receptors (43). It is possible that the
role of nonactivity regulated neuronal pentraxins is to me-
diate complex turnover, allowing real time incorporation of
activity-regulated Narp, thus linking synaptogenic efficacy
with neuronal activity.

3. CPG15 (neuritin)

cpg15 (candidate plasticity gene 15 also known as
Nrn1) was initially identified in the Nedivi screen as
seizure regulated. cpg15 has since been shown to be
induced by physiological stimuli such as light (157, 195)
and whisker stimulation (107), as well as in response to
chemically induced diabetes (139), ischemia (104), and
axotomy (258). Interestingly, while cpg15 is an IEG reg-
ulated by the same signal transduction pathways, tran-
scription factors, and promoter elements that regulate
expression of transcription factors such as Fos (87),
cpg15 encodes a small extracellular protein (191, 195,
198). The CPG15 protein contains both a signal sequence
and a consensus sequence for a glycosylphosphatidyli-
nositol (GPI) anchor, and in its processed form is at-
tached to the cell surface (191, 198). In vitro functional
characterization of CPG15 suggested that it promotes
neurite outgrowth in cultured hippocampal neurons
(191). In vivo studies, using virally mediated overexpres-
sion in the optical tectum of Xenopus leavis tadpoles
followed by live imaging, revealed that CPG15 promotes

dendritic outgrowth in a non-cell-autonomous manner
(198). Using the same system, Cantallops et al. (37)
showed that CPG15 expression significantly increased the
growth rate of retinal axons and promoted synaptic mat-
uration by recruitment of functional AMPA receptors to
synapses. Electrophysiological recording showed that
while NMDA receptor-mediated currents remained un-
changed in response to increased CPG15 levels, AMPA
receptor currents were significantly increased and failure
rates at hyperpolarizing potentials were decreased, poten-
tially due to AMPA receptor recruitment to otherwise
silent, immature synapses (37).

CPG15 protein is concentrated in axon tracts (197)
and is distributed inside the axon as well as on the axon
surface (36). Depolarization by KCl and kainate rapidly
increases surface expression of CPG15, suggesting that its
delivery to the axon membrane can be rapidly regulated
by neural activity (36). These data support a model in
which activity plays a dual role in CPG15 action, increas-
ing its expression levels, and promoting delivery of ax-
onally trafficked protein to the surface where it acts to
locally modulate dendritic and axonal elaboration, and
synaptic maturation.

CPG15 has no sequence homology with traditional
neurotrophin ligands and is unusual as a growth factor in
its action as a membrane-bound ligand. It does share with
neurotrophins an ability to act both as a neuronal growth
and differentiation factor and as a survival factor. Consis-
tent with its identification as an activity-regulated gene,
cpg15 expression is contemporaneous with critical peri-
ods for activity-dependent plasticity (52, 195). However,
cpg15 is also expressed during early brain development
before neuronal differentiation and circuit formation, sug-
gesting a different role at this stage (221). Indeed, soluble
CPG15 purified from the culture media in a heterologous
expression system can rescue both cortical progenitors
and differentiated cortical neurons from starvation-in-
duced apoptosis in vitro (221). CPG15 overexpression
in vivo during early development expands the cortical pro-
genitor pool by preventing apoptosis, resulting in an ex-
panded cortical plate and heterotypic cell masses in the
ventricular zone. Conversely, RNAi-mediated CPG15 knock-
down leads to a shrunken cortical plate with fewer neurons
as a result of decreased progenitor survival (221). It is still
unclear whether the soluble form of CPG15 harvested from
culture media in vitro exists in vivo as a biologically active
molecule, and whether CPG15’s distinct roles as a survival
or differentiation factor are mediated by the soluble versus
membrane-bound form.

4. Arcadlin

Arcadlin (activity-regulated cadherin-like protein),
found by the Worley group to be upregulated in rat hip-
pocampus after MECS or tetanic stimulation of the per-
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forant path, was the first activity-regulated gene identified
from the cadherin superfamily (284). Northern blot anal-
yses showed expression of the arcadlin gene to be brain
specific, with highest levels in hippocampus, cortex, and
the striatum. The deduced amino acid sequence predicts a
single pass transmembrane domain, an extracellular do-
main with six identified cadherin repeats, and an intra-
cellular COOH terminus. The protein is localized at the
soma, and at synapses it colocalizes with the marker
synaptophysin. The extracellular domain of Arcadlin is
most homologous to the human protocadherin 8, and
similar to other cadherins, Arcadlin possesses Ca2�-de-
pendent homophilic binding mediated by this domain.
The intracellular portion of Arcadlin, however, seems to
be unique among the cadherin family.

Anti-Arcadlin antibody application to acute hip-
pocampal slice preparations suppressed synaptic trans-
mission and impaired LTP induction by tetanic stimula-
tion (284). While these initial results indicated a role for
Arcadlin in synaptic transmission, the molecular mecha-
nisms were not elucidated until recently, when Yasuda et al.
(288) demonstrated that Arcadlin can regulate dendritic
spine numbers by inducing endocytosis of N-cadherin.
Using a variety of techniques, their study elegantly dem-
onstrated that Arcadlin and N-cadherin colocalize at syn-
apses and that Arcadlin diminishes the adhesive proper-
ties of N-cadherin. Furthermore, the authors show that
the molecular pathway for activity-induced internaliza-
tion of N-cadherin is regulated by Arcadlin through the
following sequence of events: synaptic levels of Arcadlin
are increased by activity, increasing homophilic interac-
tion of extracellular Arcadlin domains. These interactions
activate TAO2� kinase, which is constitutively bound to
the intracellular domain of Arcadlin. TAO2� is a MAPKKK
which is upstream of p38 MAPK. p38 MAPK then feeds
back to phosphorylate a key residue of TAO2� that is
required for N-cadherin endocytosis. Hippocampal neu-
rons from Arcadlin-deficient mice show a significantly
larger number of spines, perhaps due to increased adhe-
sivity as a result of reduced N-cadherin endocytosis (288).
These findings identify the synaptic adhesive apparatus as
a target of activity-dependent synaptic remodeling and
suggest that Arcadlin may be a negative regulator of syn-
apse and spine numbers through its effect on N-cadherin
internalization.

5. Cyclooxygenase 2

Cyclooxygenase 2 (COX-2) first identified by the Wor-
ley lab as an inducible immediate-early gene (283) also
surfaced in other seizure screens (5, 110, 199). Cyclooxy-
genases catalyze the first step in prostaglandin synthesis
(248) and are the pharmacological target of nonsteroidal
anti-inflammatory drugs (reviewed in Ref. 173). The
COX-2 substrate arachidonic acid is generated in the stri-

atum in response to NMDA receptor activation (68) and in
the hippocampus after synaptic stimulation that induces
LTP (275). Hence, increased synaptic activity not only
upregulates COX2 mRNA, but also increases availability
of the enzyme’s substrate. Prostaglandin H2, the product
of COX-2 catalysis, serves as the precursor for further
prostaglandin synthesis, but also for the production of
prostacyclins and thromboxanes (38, 173, 248), all of
which are diffusible molecules that can cross the plasma
membrane and therefore spread a local signal to influence
neighboring cells (109). It is of particular interest that
COX-2 immunostaining is seen in dendritic spines (140),
suggesting it can produce diffusible signaling molecules
that act locally at the synapse.

C. Regulation of the Synaptic Machinery

While both intra- and extracellular activity-regulated
signaling molecules impinge on the synapse, the third
category of activity-regulated genes encode proteins that
are integral parts of the synaptic machinery.

1. Arc

Arc (activity-regulated cytoskeleton-associated pro-
tein) was first described in 1995 as a nontranscription
factor IEG upregulated in response to seizure activity
(170). At the same time, another group characterized an
activity-regulated gene with a 3.1-kb transcript (arg3.1)
that was later found to be identical to arc (166). Robust
arc/arg3.1 mRNA upregulation is seen as early as 30 min
after induction (166, 170), and recent work has identified
a synaptic activity-responsive element (SARE) through
study of the arc/arg3.1 promoter region (143). It is rep-
resented by a �100-bp element located 5 kb upstream of
the transcription initiation site and harbors four boxes
that differentially respond to CREB, MEF2, SRF, and TCF
to regulate SARE activation (143).

Both initial studies identified homologies between
Arc and �-spectrin, characterized its rapid induction in
response to neuronal activity, and demonstrated the den-
dritic localization of arc/arg3.1 mRNA in the hippocam-
pus (166, 170). While dendritic mRNA localization had
been seen for other transcripts, e.g., MAP-2 (89), this
feature of arc expression is unique among the IEGs (251).
Taking advantage of the precise laminar targeting of per-
forant path projections in the middle molecular layer of
the hippocampal dentate gyrus, Steward et al. (251)
showed that direct activation of this pathway induces arc

expression, and accumulation of newly synthesized arc

mRNA and Arc protein, selectively in the synaptically
activated dendritic laminae (251). The local accumulation
of both transcript and protein gave rise to the idea that
arc/arg3.1 mRNA might be locally translated in dendrites,
a speculation that was confirmed in hippocampal slices
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(273). Later, it became evident that arc/arg3.1 mRNA
targeting to specific sites of synaptic activation requires
NMDA receptor activation (252). Importantly, this study
demonstrated that the induction of arc/arg3.1 mRNA and
its targeting to regions of synaptic activity are separable,
since MECS induced arc/arg3.1 mRNA was evenly dis-
tributed in the molecular layer, but when MECS was
followed by region-specific synaptic input, the induced
transcript accumulated specifically in the region of ele-
vated activity.

The arc/arg3.1 transcript is one of few naturally
occurring mRNAs where the STOP codon of the open
reading frame is not located in the last exon. Hence, upon
splicing of the transcript, an exon-junction-complex
(EJC) tag labels the mRNA at a position 3� to the STOP
codon, triggering nonsense-mediated decay of the mes-
sage (92). This suggests that not only transcriptional ac-
tivation of arc/arg3.1 but also its translation is tightly
regulated, possibly leading to a single pulse of Arc protein
translation in activated terminals and enabling the system
to react sensitively to sudden changes in local neuronal
activity.

The consequences of Arc protein loss of function
were first studied by administration of arc/arg3.1 anti-
sense oligo-deoxynucleotides via a chronically implanted
infusion cannula in the hilus of the fascia dentate (99).
These and other experiments revealed that Arc is required
for maintenance of LTP and memory consolidation, but
not short-term memory (for review, see Ref. 268). These
findings were reinforced by studies of an arc/arg3.1

knockout mouse. In these mice, LTP is compromised:
while the early phase of LTP is enhanced, the late phase
is essentially absent. The mice show disrupted memory
consolidation during spatial learning, fear conditioning,
conditioned taste aversion (which is hippocampus inde-
pendent), and object recognition, although short-term
memory was intact (215). A more recent study established
a role for Arc in Pavlovian fear conditioning in the lateral
amygdala (216). Together, these findings indicate that Arc
is required for consolidation of enduring synaptic plastic-
ity and memory storage.

The finding that Arc is necessary for expression of
L-LTP and establishment of certain forms of memory led
to examination of its role in another form of neuronal
plasticity, synaptic scaling (244). In wild-type neurons,
surface expression of postsynaptic AMPA-type glutamate
receptors is upregulated upon chronic blockade of activity
and downregulated under conditions of elevated activity to
globally and homeostatically compensate for changes in
general activity levels, a process termed synaptic scaling (for
review, see Ref. 267). In arc/arg3.1 knockout neurons, syn-
aptic scaling is absent (244). The effect on surface glutamate
receptors seems to be specific for GluR1, since surface
GluR2 levels are unchanged in arc/arg3.1 knockout neurons
(244).

Screening for Arc interacting proteins with the yeast-
2-hybrid system identified two critical components of the
endocytic machinery, dynamin 2 and endophilin 3 (44).
Both proteins coimmunoprecipitate with Arc from trans-
fected HEK cells and from forebrain preparations. In
HeLa cells, they colocalize on functional early endo-
somes. Fine-mapping of the binding sites showed that Arc
binds to dynamin 2 and endophilin 3 via distinct domains.
Amino acids 89–100 in Arc are necessary and sufficient
for binding to endophilin 3 (44), and these same amino
acids are also required for mediating the decrease in
AMPA receptor currents (228), as is the motif for dynamin
binding (44), further arguing for an endocytosis-based
mechanism of Arc function. Analysis in neurons showed
that Arc associates with endophilin and dynamin on early
endosomes as well. arc/arg3.1 knockout neurons show
increased AMPA receptor surface expression and re-
duced endocytosis (44) in line with findings in the arc/

arg3.1 knockout mouse (215).
Since AMPA receptors have been demonstrated to

undergo constitutive internalization that is regulated by
synaptic activity (70, 162), glutamate receptor internaliza-
tion has been suggested as a fundamental molecular
mechanism to reduce synaptic strength during synaptic
plasticity, leading to LTD (174). Two studies presented
evidence for a direct role for Arc in AMPA receptor
internalization (44, 228). Virally mediated overexpression
of green fluorescent protein (GFP)-tagged Arc in CA1
pyramidal neurons in hippocampal slices reduced the
amplitude of AMPA receptor-mediated synaptic currents.
This was a result of GluR2/3 containing AMPA receptor
removal from the synaptic membrane (228). siRNA di-
rected against arc/arg3.1 could block the Arc-mediated
reduction in AMPA currents, as did the deletion of the
Arc region known to interact with endophilin and re-
quired for clathrin-mediated endocytosis. The interac-
tion between the tail domain of GluR2 and the general
endocytic adaptor AP2 can be suppressed using a spe-
cific peptide which competes for receptor tail binding
(156). When delivered intracellularly through the re-
cording pipette, this peptide abolishes the Arc-induced
reduction of AMPA currents. Finally, Arc expression
occludes NMDA-dependent LTD. These data suggest
that Arc activates synaptic mechanisms similar to LTD,
namely, the removal of functional AMPA-type gluta-
mate receptors from the synapse (156, 228).

More recent studies shed light on Arc’s role in AMPA-
receptor endocytosis during mGluR-mediated LTD. Two
major mechanisms of long-term synaptic depression are
known: one mediated through the ionotropic NMDA re-
ceptors, the other by metabotropic G protein-coupled
mGluRs. Both scenarios lead to a loss of AMPA-type
glutamate receptors in the postsynaptic membrane, but
employ different molecular mechanisms (204). In an
elegant study, Waung et al. (273) reported that brief
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activation of mGluRs led to local dendritic Arc synthe-
sis and to a persistent increase of GluR1 endocytosis
rate. Furthermore, overexpression of GFP-Arc occludes
further mGluR-induced decrease of surface GluR1, arguing
that Arc and mGluR-LTD employ the same molecular mech-
anism. Finally, the authors show that endogenous Arc is
required for mGluR-mediated AMPA receptor endocytosis
and the expression of mGluR-LTD (273).

Another study examining the same pathway showed
that arc/arg3.1 translation is induced within minutes of
mGluR activation and that this induction is essential for
mGluR-LTD (209). Arc translation in response to mGluR
activity requires the translation elongation factor eEF2
kinase, a CaM kinase that binds mGluR and dissociates
upon its activation, whereupon it phosphorylates eEF2.
Phosphorylation of eEF2 by eEF2K leads to a decrease in
global translation, but an increase in specific Arc transla-
tion. Thus Park et al. (209) link local Arc translation to a
key regulatory component of the translational machinery.
Indeed, eEF2K knockouts show impaired mGluR-LTD,
showing that eEF2K and Arc act in the same molecular
pathway. Interestingly, synaptic scaling is normal in
eEF2K knockouts, suggesting that Arc’s function in this
plasticity paradigm (244) involves a molecular mecha-
nism distinct from eEFK2 function. The fragile X mental
retardation protein (FMRP) has also been shown to bind
to arc/arg3.1 mRNA (124, 293) and is hypothesized to
inhibit its translation (17). In concordance with this
model, the authors observe a dependence of mGluR-LTD
upon Arc in fmr1 knockout slices, arguing that the oth-
erwise distinct signaling pathways for eEF2K and FMRP
converge on Arc (209).

The product of an activity-regulated gene, Arc, has
been shown as essential for the formation of long-term
memories and the expression of both L-LTP and mGluR-
LTD. It regulates AMPA receptor surface expression both
in an acute way, and in homeostatic forms of plasticity
such as synaptic scaling. While its molecular mode of
action is being unraveled, we are also beginning to under-
stand how arc/arg3.1 mRNA localization and translation
are themselves tightly regulated.

2. Homer

Homer-1a was first described as an IEG regulated by
synaptic activity (30) that binds to group 1 metabotropic
glutamate receptors (mGluRs). It was subsequently
shown to be a member of a family of Homer-related
proteins derived from three distinct genes (Homer 1–3)
that each generate several splice variants (280). Like
Homer-1a, all Homer proteins bind group 1 mGluRs, yet
Homer-1a is the only IEG among them. Homer-1a is also
distinct from other Homer proteins in that it does not
contain a COOH-terminal coiled-coil domain that allows
for leucine zipper-mediated dimerization and is hence

unable to oligomerize (27, 280). Homer proteins are syn-
aptically localized (264, 280) and contain a proline-rich
NH2-terminal EVH1 domain that is critical for their spe-
cific binding to G protein-linked metabotropic glutamate
receptors mGluR1� and mGluR5 (19, 30, 264) that are
coupled to phospholipase C and thereby regulate phos-
phoinositide hydrolysis (194, 214). The same EVH domain
apparently binds other Homer ligands. Binding partners
of particular interest for synaptic function are the inosit-
ide trisphosphate receptor (IP3R) (265), the TRPC1 cation
channel (291), and the PSD scaffolding molecule Shank
(264).

Consistent with their multimeric nature, Homer com-
plexes can be coimmunoprecipitated from brain with
both mGluR1� and the IP3R, suggesting that Homer cou-
ples these receptors in a higher order signaling complex
(265). Similarly, Homer facilitates physical association
between the TRPC1 channel and the IP3R (291). Shank
binds Homer through a single EVH binding site that is
distinct from its GKAP binding domain, thus bridging
between these two proteins (264). Since GKAP had been
described as part of the NMDA receptor anchoring and
signaling complex in the postsynaptic density (PSD) (193),
the Homer-Shank interaction potentially links NMDA recep-
tors to both mGluRs and IP3Rs. Using heterologous expres-
sion in COS-7 cells, Tu et al. (265) showed that Shank
mediates attachment of Homer to PSD95/GKAP clusters and
that mGluR5 clustering relies on the presence of both
Homer and Shank. Importantly, Homer self-association and
Shank binding are mediated by different portions of Homer,
potentially allowing for assembly of a multivalent adapter
complex (265).

The IP3R is located in the ER specialization of the
spine apparatus in close proximity to the PSD (270) and
functions as an intracellular store calcium channel that
can be activated by IP3 (which can be produced through
mGluR signaling and phospholipase C activation; re-
viewed in Ref. 230). In turn, release of intracellular Ca2�

stores by ER IP3Rs regulates entry of extracellular Ca2�

through plasma membrane TRPC channels (145, 291).
Homer proteins thus physically couple intracellular IP3R
signaling to the surface mGluRs that activate them, and to
surface TRPC channels that they activate themselves. In
addition, Homer proteins in this large signaling complex
also link mGluR signaling to NMDA receptor signaling
cascades via their association with Shank and GKAP,
potentially linking IP3 receptor-mediated Ca2� emission
to general synaptic transmission. Elegantly, the Homer-
linked signaling complex can be dynamically regulated by
Homer-1a which can bind either mGluRs or IP3R, but does
not contain a cross-linking domain that would allow their
association within the same complex. Thus Homer 1a
effectively functions as an activity-regulated dominant
negative that can terminate mGluR/IP3R interactions (265,
280) as well as IP3R/TRPC1 interactions (291) and per-
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haps disassociate them from the NMDA signaling com-
plex at the PSD.

While the above functions may imply that Homer is a
“mere” scaffolding molecule, there is also evidence that
Homer can act as an intracellular agonist of G protein-
coupled mGluR1� and mGluR5 (77). Apparently these
receptors can shift from an inactive to an active confor-
mation even in the absence of agonist (217). Ango et al.
(9) showed that constitutive (agonist-independent) activ-
ity of these receptors is controlled by Homer proteins and
that disruption of the Homer/mGluR interaction leads to
constitutively active mGluR1 and mGluR5 receptors (9).
Using a pharmacological approach, they further demon-
strated that Homer-1a directly competes with Homer-3 for
mGluR1� and triggers constitutive activity of the recep-
tor. Thus, in this case, too, Homer-1a functions as an
endogenous, activity-regulated dominant negative that dy-
namically competes with constitutive Homer isoforms to
regulate mGluR function.

Additionally, Homer proteins may play a role in traf-
ficking and surface expression of group I mGluRs, al-
though this role has not been entirely clarified. In cere-
bellar neurons where endogenous Homer-1b and -1c are
absent, mGluR5 receptors display restricted somatic lo-
calization. Cotransfection of Homer-1b and -1c results in
dendritic targeting of Homer-mGluR5 complexes (8). Fur-
thermore, Homer-1b expression prevents trafficking of
mGluRs from the ER to the cell surface in heterologous
systems (229) and suppresses their surface expression in
dendrites (10). In contrast, mGluR surface expression is
positively regulated by expression of Homer-1a (10, 229).

A recent paper also shows a role for Homer in me-
diating a physical link between the PSD and the endocytic
zone adjacent to it, perhaps facilitating capture and main-
tenance of a proximal pool of cycling AMPA receptors
(169). Although understanding of all Homer functions is
still preliminary, clearly, the identification of Homer-1a as
an activity-regulated gene product has opened a window
into the inner workings of the basic synaptic machinery
and its regulation by synaptic activity.

3. CPG2

CPG2, candidate plasticity gene 2, was identified as
the product of an activity-regulated transcript (195, 196).
Similar to other activity-regulated transcripts, it seems to
be the only activity-regulated product of a multitranscript
gene. However, as a splice variant of the massive syne-1

gene, it gives rise to a protein that is unrelated structurally
or functionally to its siblings transcribed from the same
gene (53). CPG2 is expressed exclusively in brain, pre-
dominantly in hippocampus, neocortex, striatum, and cer-
ebellum. In mature cultured hippocampal neurons, CPG2
immunoreactivity is punctate and mainly localizes adja-

cent to PSD95 clusters, a marker for excitatory postsyn-
aptic sites (53).

Immunoelectron microscopic studies have shown
that CPG2 resides in the postsynaptic compartment, ad-
jacent to the PSD and in close vicinity of clathrin-coated
pits and clathrin-coated vesicles. Clathrin-mediated endo-
cytosis is believed to underlie glutamate receptor inter-
nalization (18, 40, 175, 271). The finding that CPG2 colo-
calizes with clathrin light chain in the postsynaptic endo-
cytic zone lateral to the PSD prompted Cottrell et al. (53) to
investigate the role of CPG2 in glutamate receptor internal-
ization. RNAi-mediated knockdown of CPG2 showed that
both constitutive and activity-induced AMPA-type glutamate
receptor internalization were impaired in the absence of
CPG2. Under the same conditions, a fourfold increase of
clathrin-coated vesicles was observed, some of which car-
ried the NR1 subunit of the NMDA receptor (53). Spine head
size was also affected by CPG2 levels. Under conditions
where CPG2 was overexpressed, spine head areas were
increased by 7%, upon CPG2 knockdown they were de-
creased by 18%.

Given that CPG2 is located adjacent to F-actin in
spine heads and features a spectrin repeat and coiled-coil
domains, it has been speculated that CPG2 may act as a
nexus connecting components of the endocytic machin-
ery to the actin cytoskeleton (53). However, it is equally
possible that CPG2 fulfills multiple functions, and that
variations in spine head size seen upon altered CPG2
levels are not secondary to altered membrane internaliza-
tion resulting from defective endocytosis, but are direct
effects of CPG2 on the spine cytoskeleton.

Neurons may express CPG2 after elevated synaptic
activity to prompt removal of AMPA- and NMDA-type
glutamate receptors from the synapse as a homeostatic
mechanism to counteract the effect of elevated synap-
tic activity. It is not clear whether CPG2 acts globally as
a mechanism of synaptic scaling on all synapses of a
given neuron, or whether synaptic tagging directs it to
specific synapses that undergo subsequent glutamate
receptor internalization.

D. Activity-Regulated Genes Coordinating

Inhibitory Synapse Formation

In addition to orchestrating functional and struc-
tural changes at the excitatory synapse, recent work
shows that the activity-dependent transcription pro-
gram also coordinates the formation of inhibitory syn-
apses, and likely underlies the maturation of inhibitory
circuits.

In an elegant study, Lin et al. (165) used microar-
rays to identify activity-regulated genes that respond to
membrane depolarization. Out of more than 300 poten-
tial hits, one candidate gene was responsive only to
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Ca2� influx, showed neuron-specific expression, and is
expressed coincidentally with inhibitory synapse devel-
opment. The study further shows that this protein, the
bHLH-PAS transcription factor Npas4, regulates the de-
velopment of inhibitory synapses by orchestrating the
expression of a large set of genes that controls formation
and/or maintenance of GABAergic synapses, among them
BDNF. Notably, Npas4 binds to sites in the BDNF promoter
region (165) responsible for its activity-dependent transcrip-
tion (1, 167, 257). Furthermore, BDNF knockdown partially
attenuates Npas4-induced elevation of GABAergic synapses,
suggesting that Npas4 regulation of BDNF transcription is at
least partially responsible for its effect on inhibitory synapse
numbers.

Another study from the same lab analyzed the tar-
gets of the transcriptional activator MEF2 on a genome-
wide scale (81). In neurons, MEF2 responds to neuro-
trophins and synaptic Ca2� influx (79) and has been
shown to restrict excitatory synapse numbers in certain
brain regions (14, 79, 220, 240). Using a microarray
approach, the new study by Flavell et al. (81) identifies
182 activity-dependent MEF2 target genes that are im-
plicated in various aspects of synapse function, among
them several genes that encode proteins with a struc-
tural or functional role at the inhibitory synapse. To-
gether with the findings related to Npas4, which also
seems to be a direct target of MEF2 transcription (81),
these data demonstrate that the neuronal activity-reg-
ulated gene program orchestrates inhibitory synapse
formation and function, and likely underlies earlier
observations of activity-dependent maturation of inhib-
itory circuits in the brain (106, 119).

VI. SUMMARY

It has been commonly accepted that during devel-
opment environmental cues act through specific recep-
tors to influence a cell’s transcriptional profile and
hence its fate. The idea that the environment similarly
affects transcription as a means to alter the response
properties of mature differentiated cells is newly
emerging. In the brain in particular, perhaps because of
the paucity of cell proliferation after birth, the view of
a hard-wired structure has long dominated the field.

Studies of protooncogene IEGs such as c-fos intro-
duced the general concept that gene transcription in
the nucleus is part of the cellular response program to
alterations in signaling from outside the cell. Integral to
this concept was the biphasic nature of transcriptional
activation, with IEG induction closely followed by a
second wave of delayed-early gene expression. Stimu-
lation of IEG expression by NGF in nonproliferating
PC12 cells suggested that this biphasic response could
differ according to the differentiation and physiological

state of the stimulated cell and was not necessarily
restricted to proliferative cells. Furthermore, IEG ex-
pression in culture could be induced by agents other
than growth factors and mitogens, including depolariz-
ing stimuli and voltage-gated calcium influx. In vivo,

IEGs were shown to be responsive to physiological
stimuli, providing strong support for the idea that en-
dogenous IEG expression in the brain is a result of
normal synaptic activity and can therefore be influ-
enced by neuronal stimulation or activity blockade in a
pathway and stimulus specific manner. At the same
time it was becoming clear that synaptic activity can
also drive long-term changes in neuronal structure and
function. These concepts were unified with the pro-
posal that electrical and chemical stimuli that produce
long-term change in neurons, such as during learning
and memory, act through mechanisms analogous to
those of growth factors, namely, through second mes-
senger pathways that lead to transcriptional activation.

Forward genetic screens aimed at identifying genes
induced by neuronal activity rather than by growth factor
stimulation proved essential to understanding the activity-
dependent genetic programs utilized by neurons in the mam-
malian brain on an everyday basis. Characterization of ac-
tivity-regulated genes identified in these screens has ad-
vanced our knowledge of the cellular changes set in motion
by synaptic activity. While signaling from the synapse to the
nucleus utilizes traditional second messenger pathways,
similar to those activated by growth factors and inducing
many of the same transcription factor IEGs, the cellular
response program activated by these two types of stimuli
diverges at the transcriptional level. Transcriptional pro-
grams initiated by synaptic activity are dominated by gene
products that directly impinge on neuronal structure and
function, with particular emphasis on proteins that promote
process outgrowth and differentiation or interface with syn-
aptic machinery (see Fig. 1).

Given the large number of candidates identified in
screens for activity-regulated genes, many of which remain
uncharacterized in a neuronal context, we are only begin-
ning to fathom the complexity of processes regulated by
synaptic activity in the brain. Yet, despite our incomplete
understanding, several themes are beginning to emerge sur-
rounding the role of activity-regulated genes in brain func-
tion. Neurons react to changes in levels of synaptic activity
with a complex response that takes place on multiple levels
and at different time points. Neuronal plasticity, Hebbian or
homeostatic, is a consequence of potentially overlapping
and interacting actions of a wide number of genes. Further-
more, multiple signals and intracellular pathways can influ-
ence transcriptional activation via an assortment of cis- and
trans-acting elements, and nuclear IEGs themselves make
up a diverse array of factors that can potentially act in a
multitude of combinations to differentially affect distinct
second-wave gene sets.
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The large number of genes induced by neuronal ac-
tivity, and their individual functions suggest that “plastic-
ity genes” are not a unique regulatory gene set whose
action is layered on top of constitutive cellular and syn-
aptic genes; rather, they constitute the backbone of the
synaptic and cellular machinery and their regulated ex-
pression is a means to dynamically tune everyday neuro-
nal function. In addition, regulation of activity-dependent
genes is tightly controlled not only at the transcriptional
level, but also at the levels of translation and localization,

and perhaps at the levels of mRNA and protein half-life,
allowing fine spatial and temporal control of the machin-
ery they oversee.

C-fos, c-jun, CREB, CREM, zif/268, tPA, Rheb, RGS2,
CPG16, COX-2, Narp, BDNF, CPG15, Arcadlin, Homer-1a,
CPG2, and Arc likely constitute only the tip of the iceberg
in the fascinating array of cellular mechanisms our brains
use to bring about remarkable functions such as learning
and memory, as well as cognitive abilities like thought
and reasoning.

FIG. 1. Activity-regulated genes affect multiple cellular functions at different organizational levels. Boxed sketches depict specific biological
processes and show the activity-regulated gene products involved. The boxes are arranged according to the level of organization they represent:
top, synaptic level; middle, cellular level; bottom, systems level. Vertical bars on the right indicate which levels each activity-regulated gene product
spans with respect to its mechanism of operation.
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