Regulation of \textit{cpg15} by signaling pathways that mediate synaptic plasticity

Tadahiro Fujino, Wei-Chung Allen Lee, and Elly Nedivi*

\textit{The Picower Center for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA}

Received 11 February 2003; revised 20 June 2003; accepted 26 June 2003

Abstract

Transcriptional activation is a key link between neuronal activity and long-term synaptic plasticity. Little is known about genes responding to this activation whose products directly effect functional and structural changes at the synapse. \textit{cpg15} is an activity-regulated gene encoding a membrane-bound ligand that regulates dendritic and axonal arbor growth and synaptic maturation. We report that \textit{cpg15} is an immediate-early gene induced by Ca2+ influx through NMDA receptors and L-type voltage-sensitive calcium channels. Activity-dependent \textit{cpg15} expression requires convergent activation of the CaM kinase and MAP kinase pathways. Although activation of PKA is not required for activity-dependent expression, \textit{cpg15} is induced by cAMP in active neurons. CREB binds the \textit{cpg15} promoter in vivo and partially regulates its activity-dependent expression. \textit{cpg15} is an effector gene that is a target for signal transduction pathways that mediate synaptic plasticity and thus may take part in an activity-regulated transcriptional program that directs long-term changes in synaptic connections.

© 2003 Elsevier Inc. All rights reserved.

Introduction

Regulation of gene expression is critical for bringing about long-term changes in synaptic connections in response to neuronal activity (Goelet et al., 1986; Sheng and Greenberg, 1990). Synaptic activation results in Ca2+ influx through N-methyl-D-aspartate (NMDA) receptors and L-type voltage-sensitive calcium channels (VSCCs), triggering several kinase pathways (Sheng et al., 1991; Bading et al., 1993; Deisseroth et al., 1996). Three kinase pathways that play critical roles in various aspects of long-term plasticity are the Ca2+/calmodulin-dependent protein kinase (CaMK), the mitogen-activated protein kinase (MAPK), and the protein kinase A (PKA) pathways. These pathways activate transcription factors and cofactors such as cAMP-responsive element binding protein (CREB), CREB-binding protein (CBP), the ternary complex factor Elk-1, and Ca2+ response factor CaRF, which in turn activate transcription of activity-regulated genes (Sheng et al., 1991; Xia et al., 1996; Chawla et al., 1998; Hu et al., 1999; Tao et al., 2002). Pharmacological and genetic studies have shown that the CaMK, MAPK, and PKA pathways and downstream factors like CREB are important for the electrophysiological paradigms of plasticity, long-term potentiation, and long-term depression, as well as for learning and memory (reviewed in Yin and Tully, 1996; Brandon et al., 1997; Silva et al., 1998; Impy et al., 1999; Orban et al., 1999; Soderling, 2000; Sweatt, 2001; Lisman et al., 2002). These pathways have also been shown to generate structural changes that can alter neuronal connectivity (Wu and Cline, 1998; Wu et al., 2001; Redmond et al., 2002; Vaillant et al., 2002). Despite strong evidence linking kinase pathways and transcription factors to long-term plasticity, little is known about how activation of these upstream regulatory molecules leads to long-term structural and functional changes at the synapse. Identifying effector genes regulated by these pathways is a crucial first step in elucidating the cellular processes that underlie plasticity. Among known activity-regulated genes, only a handful have been shown to function as effector genes whose products directly mediate functional and structural changes.
at the synapse. Of these, upstream regulation of only two genes, brain-derived neurotrophic factor (BDNF) and homervesl, has been studied (Shieh et al., 1998; Tao et al., 1998; Sato et al., 2001).

Candidate plasticity gene 15 (cpg15) was isolated in a screen for activity-regulated genes induced by kainate-stimulated seizure in the rat dentate gyrus (Nedivi et al., 1993) and was subsequently shown to be sensitive to physiological stimuli such as light in the visual cortex (Nedivi et al., 1996). Its temporal and spatial expression patterns and its regulation by sensory input correlate with times and places of activity-dependent developmental plasticity (Corriveau et al., 1999; Nedivi et al., 2001; Lee and Nedivi, 2002). When overexpressed in Xenopus optic tectal neurons, CPG15 induces elaboration of dendritic and axonal arbors and synaptic maturation by AMPA receptor insertion (Nedivi et al., 1998; Cantallops et al., 2000). These properties make cpg15 a potential target for activation by signal transduction pathways that lead to long-term plasticity.

Here we use cultured cortical neurons to investigate the pathways that lead to transcriptional activation of cpg15 by synaptic activity. These studies demonstrate that cpg15 is an immediate-early gene (IEG) regulated by multiple-signal transduction pathways, transcription factors, and promoter elements that have been strongly implicated in plasticity. Comparing the regulation of activity-induced effector genes will identify those salient properties of signaling pathways that mediate plasticity.

Results

cpg15 is an IEG induced by synaptic activity through NMDA receptors and L-type VSCCs

To study transcriptional regulation of the cpg15 gene, we first examined whether cpg15 expression in mouse primary neuronal cultures adequately reflects its in vivo regulation. Cortical neurons cultured for 14 div were treated for 9 h with the sodium channel blocker tetrodotoxin (TTX) to block action potential activity or with the \(\gamma \)-aminobutyric acid (GABA) antagonist picrotoxin (PTX) to stimulate neurons. GABA receptor blockade releases the tonic inhibition imposed by inhibitory neurons in the culture, causing excitatory neurons to fire synchronous bursts of action potentials (Hardingham et al., 2001). A single band of 2.0 kb was detected on Northern blots with a cpg15 probe (Fig. 1A), consistent with the predicted transcript length (Naeye et al., 1997). TTX-treated cultures showed low levels of cpg15 mRNA, indicating that basal cpg15 expression is maintained in the absence of action potential firing. Nontreated cultures showed an approximately two-fold higher level of cpg15 expression than TTX-treated cultures (Fig. 1B), likely due to spontaneous activity. PTX-treated cultures showed an approximately five-fold higher expression of cpg15 than TTX-treated cultures. These results show that cpg15 levels in primary cortical cultures reflect a combina-

![Figure 1](image)
tion of activity-independent and activity-dependent expression, consistent with cpg15 regulation seen in vivo (Corriveau et al., 1999; Lee and Nedivi, 2002).

Elevation of intracellular Ca\(^{2+}\) is a key step in the translation of neuronal activity into changes in gene expression (Ghosh et al., 1994; West et al., 2001). The site of Ca\(^{2+}\) entry can determine the signaling pathways activated, the genes transcribed, and the biological outcome of their activation (Bading et al., 1993; Ghosh and Greenberg, 1995; Hardingham et al., 2002). The Ca\(^{2+}\) chelator EGTA blocked the PTX-induced increase in cpg15 expression (Fig. 1B), indicating a requirement for extracellular Ca\(^{2+}\) in activity-dependent regulation of the cpg15 gene. To distinguish whether this requirement was associated with a specific site of Ca\(^{2+}\) entry, PTX-stimulated cultures were treated with the NMDA receptor antagonist CPP or the L-type VSCC antagonist nifedipine. We found that either CPP or nifedipine alone completely blocked PTX-induced cpg15 expression, but their effect was not additive (Fig. 1B). These results demonstrate that activity-dependent cpg15 expression requires Ca\(^{2+}\) influx through both the NMDA receptors and L-type VSCCs.

In the case of other activity-regulated genes such as c-fos and BDNF, activation of L-type VSCCs is sufficient for gene activation (Murphy et al., 1991; Shieh et al., 1998; Tao et al., 1998). To examine if the dual requirement for NMDA receptors and L-type VSCCs activation was specific for synaptic stimulation by PTX, we stimulated cultures by depolarizing cells with KCl in the presence of CPP. This treatment significantly increased cpg15 expression (Fig. 1B), indicating that NMDA receptors are not required when VSCCs are directly activated by depolarization. cpg15 induction by KCl and CPP was blocked by nifedipine, indicating that L-type VSCCs are required for activity-dependent cpg15 expression.

Ca\(^{2+}\) influx through NMDA receptors or L-type VSCCs activates signal transduction pathways that can directly induce IEGs without the requirement for protein synthesis. Some IEGs are themselves transcription factors that activate additional downstream genes. To determine if cpg15 is an IEG or is induced by IEGs in a protein synthesis-dependent manner, cortical cultures were stimulated with PTX for 9 h in the presence of the protein synthesis inhibitor cycloheximide (CHX). cpg15 induction by PTX was comparable in the presence or absence of CHX (Fig. 1C). CHX blockade of protein synthesis by more than 95% was confirmed by \([^{35}S]\)methionine incorporation (data not shown). This result indicates that cpg15 is an IEG.

A 1.9-kb promoter fragment is sufficient to confer cpg15’s activity-dependent regulation

To identify the region of cpg15 that directs its activity-dependent transcription, we isolated the mouse cpg15 gene and mapped its exon–intron structure and promoter region. Genomic Southerns identified a single copy cpg15 gene (data not shown). The cpg15 gene contains three exons, encoding amino acids 1–19, 19–67, and 67–142 of CPG15 (summarized in Fig. 2A). To test if the 1.9-kb genomic fragment upstream of the cpg15 translation start site is sufficient for activity-dependent regulation, we fused this fragment to the promoterless firefly luciferase gene. This reporter plasmid (cpg15-Luc) was transfected into cortical cultures, and promoter function was measured by luciferase activity. Transcription driven by the 1.9-kb cpg15 upstream fragment after 9 h of TTX treatment was significantly higher than that of a promoterless control plasmid (Fig. 2B), indicating that this fragment contains a functional promoter. When cpg15-Luc transfected cultures were stimulated for 9 h with PTX, we observed an approximately two-fold increase in cpg15 promoter activity compared to TTX-treated cultures (Fig. 2B). Luciferase expression driven by the SV40 promoter was unaffected by PTX treatment. These results indicate that the 1.9-kb upstream region of the cpg15 gene can drive activity-dependent regulation.

We further found that similar to the case for the endogenous cpg15, addition of EGTA, CPP, nifedipine, or both CPP and nifedipine all blocked PTX-induced cpg15 promoter activity (Fig. 2C). Thus, the regulation mediated by the 1.9-kb cpg15 upstream fragment is qualitatively similar to that seen for the endogenous cpg15 gene in cortical cultures.

The cpg15 promoter contains multiple potential binding sites for activity-regulated transcription factors

We sequenced the 1.9-kb cpg15 upstream region to identify potential binding sites for transcription factors known to be regulated by synaptic activity. Two TATA boxes were present at 320 and 354 bp upstream of the translation start site. We infer that the upstream TATA box is the polymerase-binding site because it is conserved between mice and humans. Within the 1.9-kb upstream region, the TFSEARCH program identified three sequences similar to the CREB binding site, CRE, three sequences similar to the AP-1 binding site, TPA-responsive element (TRE), and two sequences similar to the early growth response (EGR) family binding site, EGR responsive element (EGR RE) (Table 1). In addition, we identified by sequence comparison a sequence similar to the CaRF binding site, CaRE1, found in the BDNF promoter. Of these sites, two CRE-like sites, one TRE-like site, and the CaRE1-like site were conserved between the mouse and human cpg15 genes (Table 1). Thus, the cpg15 promoter contains at least nine potential binding sites for transcription factors that are known to be responsive to neuronal activity (Saffren et al., 1988; Sukhatme et al., 1988; Sheng and Greenberg, 1990; Worley et al., 1990, 1991; Tao et al., 2002).

CREB and EGR family members bind to sequences in the cpg15 promoter

To test if the sequences in the cpg15 promoter similar to CRE, TRE, EGR RE, and CaRE1 bind their respective
Fig. 2. A 1.9-kb cpg15 promoter fragment mediates activity-dependent reporter gene expression. (A) Schematic diagram of the cpg15 genomic structure and the cpg15-Luc reporter construct. Closed boxes indicate the three exons of the cpg15 gene. The cpg15-Luc plasmid contains 1.6 kb of cpg15’s promoter region and 0.3 kb of its 5’ untranslated region fused to the luciferase reporter gene (Luc). (B) The 1.9-kb cpg15 upstream fragment drives both activity-independent and activity-dependent transcription. Cortical cultures were transfected with the cpg15-Luc reporter plasmid, with the pGL3-promoter vector carrying an SV40 promoter (SV40prom-Luc), or with the promoterless pGL3-basic vector (Luc only) at 6 div. At 14 div, cultures were treated with TTX or PTX for 9 h. Promoter activity measured as firefly luciferase activity was normalized to Renilla luciferase activity from the cotransfected plasmid pRL-TK. Luciferase activities shown are relative to cpg15-Luc transfected cells treated with TTX. Luciferase activity in the presence of the cpg15 promoter was higher than in its absence. PTX treatment further increased the luciferase activity from cpg15-Luc as compared to TTX treated cells (*P < 0.01, ANOVA and SNK post hoc test; n = 6). (C) PTX-induced cpg15 promoter activity requires Ca²⁺ influx through NMDA receptors and L-type VSCCs. Cortical cultures transfected with cpg15-Luc were stimulated with PTX for 9 h in the absence or presence of the indicated pharmacological agents. The PTX-induced increase in luciferase activity driven by the cpg15 promoter was blocked by EGTA, CPP, and nifedipine (*P < 0.01 versus TTX, ANOVA, and SNK post hoc test; n = 6).

In vitro binding activity of the potential binding sites in the cpg15 promoter to factors in brain nuclear extracts

<table>
<thead>
<tr>
<th>Transcription factor</th>
<th>Position (kb)</th>
<th>DNA sequence</th>
<th>In vitro binding</th>
<th>Conservation in human</th>
<th>Site specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CREB</td>
<td>-1.56</td>
<td>TGACATCA</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.84</td>
<td>TGACTTCA</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+0.04</td>
<td>CCCGGTCA</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>AP-1</td>
<td>-1.34</td>
<td>TCAGTGTC</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.10</td>
<td>TGACTGCA</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.05</td>
<td>TATTTTCTGG</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>EGR</td>
<td>-1.59</td>
<td>CGCCCCCGCC</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1.58</td>
<td>CGCCCCACCC</td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>CaRF</td>
<td>-0.62</td>
<td>CTATTCTTCA</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

*a Position relative to transcription start site.

*b Binding to factors in nuclear extract of adult mouse brain determined by EMSA. (+) or (−) indicate presence or absence, respectively, of specific bands with similar mobility as those detected using the consensus binding site of the corresponding transcription factor.

*c Conservation of sites in the human cpg15 gene. An asterisk indicates one base substitution.
CREB, CRE modulatory factor (CREM), and activating transcription factor-1 (ATF-1) (Shaywitz and Greenberg, 1999). To determine if any of these factors are components of the bands detected with the cpg15 CREs, antibodies to each CREB family member were added to the EMSAs, and the effect on complex mobility was assessed. In the presence of the anti-CREB antibody, there was a supershift of the faster migrating DNA/protein complex formed with the CRE consensus, as well as with the cpg15 CREs (Fig. 3B). This suggests that all three sites bind CREB. The anti-CREM antibody caused a supershift of the same band as the anti-CREB antibody, suggesting that these sites also bind
Fig. 4. CREB is involved in activity-dependent regulation of the cpg15 promoter. (A) Dominant negative CREB mutants block activity-dependent transcription driven by the cpg15 promoter. Cortical cultures were cotransfected with cpg15-Luc and A-CREB or K-CREB dominant negative CREB expression plasmids or a control EGFP expression plasmid. Cultures were treated with TTX or PTX for 9 h, and cpg15 promoter activity was determined by luciferase assay as in Fig. 2. Luciferase activities shown are relative to TTX-treated cells transfected with cpg15-Luc and the EGFP expression plasmid. A-CREB and K-CREB both significantly reduced activity-dependent luciferase expression driven by the cpg15 promoter (*P < 0.01, ANOVA and SNK post hoc test; n = 10–11). (B) cpg15 CREs play a role in activity-dependent transcription driven by the cpg15 promoter. Cortical cultures were transfected with the cpg15-Luc plasmid carrying the wild-type cpg15 promoter (top) or the same plasmid with individual point mutations in the −1.56-kb CRE, −0.84-kb CRE, −0.04-kb CRE, and −1.58-kb EGR RE, or with a combination of point mutations. The luciferase reporter fused to the SV40 promoter served as a control (SV40, bottom). Schematic diagrams of these reporter plasmids are shown on the left. Intact binding sites are indicated by closed boxes, and mutated sites are marked with an X. Transfected cells were treated with TTX or PTX for 9 h, and cpg15 promoter activity assayed as described for Fig. 2. The effect of mutating each site was analyzed using a two-factor ANOVA with combined data from single and multiple mutations. Mutation of the −1.56-kb CRE significantly increased cpg15 promoter activity in PTX-treated cultures (P < 0.001, n = 10–15), whereas mutation of the +0.04-kb CRE significantly
CREM. Anti-ATF-1 antibody and control IgG had no effect on either of the bands. The slower migrating band detected with the four probes was not affected by any of the antibodies against known CREB family members, suggesting that it binds a more distantly related factor.

EMSAs using the cpg15 −1.58-kb EGR RE showed two DNA/protein complexes with similar mobility and specificity as the two rapidly migrating DNA/protein complexes seen with the EGR RE consensus (Fig. 3C), indicating that the −1.58 kb site in the cpg15 promoter region binds an EGR family member or related factors. The EGR family has four members: EGR1/zif268/NGFI-A/krox24, EGR2/krox20, EGR3/PILOT, and EGR4/NGFI-C (O’Donovan et al., 1999). Addition of the anti-EGR1 antibody caused a supershift of the most slowly migrating DNA/protein complex detected using the consensus sequence (Fig. 3D). This slowly migrating band could not be detected in an EMSA using the −1.58-kb EGR RE due to a nonspecific comigrating band. However, addition of the anti-EGR1 antibody to the EMSA with −1.58 kb EGR RE showed a supershifted band identical to that seen with the consensus EGR RE, suggesting that EGR1 binds to the −1.58-kb EGR RE. The anti-EGR3 antibody supershifted the most slowly migrating DNA/protein complex detected using the EGR RE consensus and the −1.58-kb EGR RE, suggesting that EGR3 also binds to these sites. Addition of anti-EGR2 antibody and control IgG had no effect on any of the bands detected using both probes. The middle band detected using EGR RE consensus and −1.58-kb EGR RE was not affected by the three antibodies tested.

In summary, all three CREs in the cpg15 promoter bind both CREB and CREM, whereas the −1.58-kb EGR RE binds EGR1 and EGR3. Of all the potential sites in the cpg15 promoter, these sites emerged as the most likely to be involved in activity-dependent transcriptional regulation of the cpg15 gene.

CREB mediates activity-dependent transcription of cpg15

Given CREB’s importance as a transcription factor essential for synaptic plasticity, and our finding that three CRE sites in the cpg15 promoter bind CREB in vitro, we further investigated CREB’s role in activity-dependent cpg15 transcription. Two different dominant negative CREB mutants were each coexpressed with cpg15-Luc in cortical cultures, and their effect on cpg15 promoter-driven luciferase expression was assayed. A-CREB and K-CREB are mutant versions of CREB that form high-affinity heterodimers with endogenous CREB family members and inhibit their binding to CRE sites (Walton et al., 1992; Ahn et al., 1998). When coexpressed with cpg15-Luc, both A-CREB and K-CREB significantly reduced the levels of activity-dependent luciferase expression in PTX-treated cells (Fig. 4A). To confirm that the decreased transcription was not a result of nonspecific toxic effects of the dominant negative CREB versions, their effect on the SV40 promoter-driven transcription was also assayed. Luciferase expression driven by the SV40 promoter was unaffected by coexpression of A-CREB or K-CREB (data not shown), indicating that the effect of dominant negative CREB was specific to the cpg15 promoter. These results strongly implicate CREB family members in the activity-dependent regulation of cpg15.

The cpg15 CREs mediate both positive and negative regulation of activity-dependent transcription

To test if the CREs or the EGR RE in the cpg15 promoter mediate cpg15’s response to CREB or EGR, we introduced point mutations that abolish CREB or EGR binding in each of the CREs and EGR RE within the cpg15-Luc reporter individually or in combination. The effect of these mutations on transcriptional regulation of the luciferase reporter gene was assessed in cortical cultures treated with TTX or PTX. Unexpectedly, we found that mutation of the −1.56-kb CRE significantly increased cpg15 promoter activity in PTX-treated cultures (Fig. 4B), indicating that this site negatively regulates cpg15 expression. Mutation of the −0.84-kb CRE had no detectable effect on cpg15 promoter activity, possibly correlated with the low binding affinity of this site for CREB (see Fig. 3A). Mutation of the +0.04-kb CRE significantly decreased cpg15 promoter activity. Mutation of the −1.58-kb EGR binding site resulted in a modest increase in cpg15 promoter activity that was not statistically significant. Thus, the CRE sites in the cpg15 promoter regulate transcription in both positive and negative ways. Combined mutation of all three CREs and EGR RE showed luciferase expression levels similar to those of the wild-type cpg15-Luc reporter, probably due to the positive and negative effects of the different mutations canceling each other out.

CREB binds the endogenous cpg15 promoter in vivo

To examine if CREB binds the endogenous cpg15 promoter in vivo, we performed a ChIP assay. We cross-linked DNA-bound proteins to chromatin in cortical cultures, sheared the chromatin by sonication, and then immunoprecipitated the chromatin with a specific antibody against decreased its activity (P < 0.01, n = 10–15). (C) Endogenous CREB binds to the cpg15 promoter in vivo. DNA-binding proteins in cortical cultures were cross-linked to chromatin with formaldehyde, sonicated, and then subjected to immunoprecipitation with anti-CREB antibody or control IgG. After reversing the cross-links, presence of promoter fragments in the immunoprecipitates was examined by PCR with primers covering the cpg15 −1.56-kb CRE, cpg15 +0.04-kb CRE, or the GAP-43 promoter as a negative control. Input chromatin (0.5%) was used as a positive control for the PCR reaction. The +0.04-kb CRE cpg15 promoter region was present in the chromatin immunoprecipitated by the anti-CREB antibody, indicating that it binds CREB in vivo.
CREB. The presence of promoter fragments coimmunoprecipitating with the CREB protein was then assayed using PCR. We detected the +0.04-kb CRE cpg15 promoter region in the CREB immunoprecipitate (Fig. 4C), but could not detect the −1.56-kb CRE cpg15 promoter region. The GAP-43 promoter, a gene expressed in neurons but not regulated by activity, was not detected in the CREB immunoprecipitate, showing that immunoprecipitation of the cpg15 promoter was specific. To control for antibody specificity, we performed the immunoprecipitation with a control IgG. Neither the cpg15 promoter nor the GAP-43 promoter was detected in the immunoprecipitate (Fig. 4C). These data show that CREB binds to the cpg15 promoter in vivo and strongly suggest that CREB regulates transcription of cpg15 through the +0.04-kb CRE site.

Activity-dependent cpg15 expression requires both the CaMK and MAPK pathways

Because activity-dependent cpg15 expression is regulated by Ca\(^{2+}\) influx through NMDA receptors and L-type VSCCs, we investigated whether kinase pathways activated by these modes of Ca\(^{2+}\) entry may be involved. To test whether the CaMK and MAPK pathways play a role in cpg15’s activity-dependent regulation, we analyzed PTX-induced cpg15 expression in cultures treated with kinase inhibitors. Treatment with the CaMK inhibitor KN93, or the MAP kinase kinase (MEK) inhibitor U0126, but not with their inactive analogs KN92 or U0124, significantly reduced PTX-induced cpg15 expression (Fig. 5A), suggesting that both the CaMK and MAPK pathways are involved in activity-dependent cpg15 expression.

KN93 is an inhibitor of all the CaMKs, including CaMKII and CaMKIV. Although both CaMKII and CaMKIV have been associated with transcriptional activation and synaptic plasticity, it is generally thought that CaMKII acts locally near the synapse, whereas CaMKIV is more effective in transcription factor activation because of its nuclear localization (reviewed in Soderling, 2000). We therefore tested whether CaMKIV may be involved in cpg15’s transcriptional activation by cotransfecting a dominant negative form of CaMKIV (dnCaMKIV) together with the cpg15-Luc reporter plasmid. The transfected dnCaMKIV did not significantly affect cpg15 promoter activity (Fig. 5B), although its expression and function could be confirmed in HEK293T cells (data not shown).

To verify these unexpected results and to test whether CaMKIV was relevant to cpg15’s in vivo regulation, we examined activity-dependent cpg15 expression in transgenic mice with forebrain-specific expression of dnCaMKIV (Kang et al., 2001). Wild-type and dnCaMKIV transgenic mice were injected with the glutamate analog kainate or with PBS as a control. Six hours later, the mice were sacrificed, the cerebral cortices were removed, and total RNA was extracted. Using Northern blot analysis, cpg15 expression in response to kainate-induced seizure was compared between groups of wild-type and dnCaMKIV transgenic mice (Fig. 5C and D). cpg15 expression levels in PBS injected controls were comparable in wild-type and dnCaMKIV transgenic mice. Kainate-injected mice showed significantly higher cpg15 expression in both wild-type and dnCaMKIV transgenic mice. Increases in cpg15 expression by kainate ranged from 1.4- to 3.3-fold in wild-type and 1.5- to 4.1-fold in dnCaMKIV transgenics as compared to PBS-injected controls. On average, dnCaMKIV transgenic mice showed no significant difference in fold cpg15 induction as compared to wild-type mice. Together, these results suggest that CaMKIV is not a major regulator of activity dependent cpg15 expression.

cpg15 expression is induced by cAMP, but PKA activation is not sufficient for this induction

To test involvement of the PKA pathway in cpg15 regulation, we examined whether the adenylate cyclase activator forskolin could induce cpg15 expression. Forskolin treatment for 9 h significantly increased cpg15 mRNA levels similar to those induced by PTX (Fig. 6A), indicating that cpg15 is induced by activation of the cAMP pathways. When compared to application of PTX or forskolin alone, combined application of PTX and forskolin resulted in a further increase in cpg15 expression, although this increase was not statistically significant. Since there is a low level of cpg15 induction in untreated cultures, likely due to spontaneous activity (see Fig. 1B), we stimulated the cultures with forskolin in the presence of TTX. Unexpectedly, TTX blocked forskolin-induced cpg15 expression (Fig. 6A), indicating that electrical activity is required for cpg15 induction by forskolin. To ascertain if Ca\(^{2+}\) channels were involved, we stimulated the cultures with forskolin in the presence of CPP and nifedipine. Together, CPP and nifedipine blocked forskolin-induced cpg15 expression, indicating that NMDA receptors and L-type VSCCs are required for forskolin-induced cpg15 expression, as for PTX induction.

Since forskolin and PTX induce cpg15 to similar levels, we used an in vitro kinase assay to examine if PKA is activated during PTX stimulation. PTX treatment did not result in PKA activation (Fig. 6B), indicating that induction by PTX does not involve activation of PKA. Forskolin-treated cultures showed significant PKA activation, as expected. Since forskolin-induced cpg15 expression was blocked by TTX, or CPP and nifedipine, we examined the PKA activity under these conditions. PKA activation was unaffected in the presence of TTX or CPP and nifedipine, indicating that PKA activation is not sufficient for cpg15 expression. Thus, although cpg15 is induced by increases in cAMP levels, PKA activation is not sufficient for this induction, but requires concurrent synaptic stimulation mediated by NMDA receptors and L-type VSCCs.
Discussion

Regulation of cpg15 transcription by Ca\(^{2+}\) influx through NMDA receptors and L-type VSCCs

Our results show that activity-dependent cpg15 expression induced by PTX-evoked synaptic stimulation requires Ca\(^{2+}\) influx through both the NMDA receptors and L-type VSCCs. This dual requirement could stem from either parallel or sequential activation of these Ca\(^{2+}\) channels (Fig. 7). A dual requirement for NMDA receptors and L-type VSCCs in activation of CREB phosphorylation and c-fos expression has been reported for striatal neurons (Rajadhyaksha et al., 1999). In these neurons, a sequential pathway was mapped from AMPA/kainate receptors to NMDA receptors and from NMDA receptors to L-type VSCCs, with the VSCCs being the essential last step necessary for activation of intracellular second messenger pathways. cpg15 expression induced by depolarization with high potassium requires only the L-type VSCCs, suggesting that such strong stimulation can bypass the need for NMDA receptors by activating L-type VSCCs directly. This is consistent with studies of other activity-regulated genes such as c-fos and BDNF, where activation of L-type VSCCs is sufficient for...
inducing transcription (Murphy et al., 1991; Shieh et al., 1998; Tao et al., 1998) and supports sequential roles for NMDA receptors and L-type VSCCs in activation of cpg15 transcription in response to synaptic stimulation.

Alternatively, the dual requirement for Ca2+ influx through both channels for cpg15’s activity-dependent regulation may reflect a dependence on signaling pathways originating from NMDA receptors and L-type VSCCs, because both channels are directly coupled to signal transduction pathways (Deisseroth et al., 1996; Husi et al., 2000; Dolmetsch et al., 2001). L-type VSCCs can activate the MAPK pathway through direct binding of Ca2+-calmodulin, which functions as a local Ca2+ sensor at the mouth of the channel (Peterson et al., 1999; Zuhlke et al., 1999; Dolmetsch et al., 2001). The NMDA receptor is part of a multiprotein complex with multiple kinases in the MAPK pathway as well as CaMKII and PKA (Husi et al., 2000). A requirement for convergent signals from multiple signaling pathways that are initiated at specific sites of Ca2+ entry is consistent with studies showing that local increases in Ca2+ concentration at its site of entry are more important for activation of signaling pathways and gene expression than global Ca2+ levels (Deisseroth et al., 1996; Dolmetsch et al., 2001; Hardingham et al., 2001). It is also consistent with our finding that cpg15’s activity-dependent regulation requires both the CaMK and MAPK pathways.

Activity-dependent cpg15 expression requires both the CaMK and MAPK pathways but not the activation of PKA

The requirement for both the CaMK and MAPK pathways for cpg15 induction by synaptic stimulation suggests that the CaMK and MAPK pathways act on multiple transcription factors, some of which are nonoverlapping, that together activate cpg15 expression. An example of this can be seen in regulation of the c-fos gene, where activation of two transcription factors CREB and Elk-1 are important in induction of the c-fos in response to Ca2+. For c-fos, both CaMK and MAPK act through CREB to activate transcription, but MAPK additionally activates Elk-1 (Xia et al., 1996). Although we found no Elk-1 binding sequence in the 1.9-kb upstream region of cpg15, other transcription factors could potentially serve a similar function.

Our finding that CaMKIV is not involved, despite the requirement for CaMKs for cpg15’s activity-dependent expression, was surprising in light of the studies showing the importance of CaMKIV in regulating Ca2+-dependent transcription (Bito et al., 1996; Chawla et al., 1998; Hardingham et al., 1999; Ho et al., 2000; Imp ey et al., 2002). The requirement for CaMKs but not CaMKIV suggests that other CaMKs such as CaMKII are involved. CaMKII is
enriched at the synapse and is closely associated with L-type VSCCs and NMDA receptors (Deisseroth et al., 1996; Husi et al., 2000; Dolmetsch et al., 2001). CaMKII may regulate transcription indirectly by activating downstream signaling molecules that translocate to the nucleus (Hook and Means, 2001). Alternatively, nuclear isoforms of CaMKII-α, -δ, and -γ may be involved (Soderling et al., 2001).

Because PTX did not induce PKA activity despite increasing cpg15 expression, PKA activation is apparently not required for mediating cpg15’s response to synaptic activity. However, basal level of PKA may play a permissive role in activity-dependent cpg15 expression. PKA activity has been shown to be required for nuclear translocation of the MAPK signals necessary for CREB-dependent transcription (Impey et al., 1998). Basal PKA activity may be sufficient for this function in the context of cpg15 regulation.

Regulation of cpg15 by multiple transcription factors including CREB

Our finding that two different forms of dominant negative CREB significantly reduce activity-dependent cpg15 expression indicates a role for CREB in cpg15 regulation. A role for CREB in mediating the activity-dependent induction of cpg15 is also supported by in vivo studies of cpg15 expression in barrel cortex of control and CREB α,Δ-knockout mice (C. Harwell, B. Burbach, K. Svoboda, and E. Nedivi, unpublished observations). After eliciting receptive field plasticity by whisker trimming, cpg15 expression increases in the barrel corresponding to the spared whisker. In CREB mutant mice, cpg15 expression is not induced to the same extent as in wild-type littermates, suggesting that CREB is necessary for cpg15 regulation during receptive field plasticity in the adult cortex.

Our finding that cpg15 is an IEG indicates that CREB directly regulates cpg15 by binding to CRE sites in its promoter region. Consistent with this, we found three CREs in the cpg15 promoter that binds CREB in vitro. Unexpectedly, the cpg15 CREs had both positive and negative effects on cpg15 regulation. The +0.04-kb CRE had a positive effect, likely mediated by CREB. This is supported by ChIP assays demonstrating in vivo CREB binding to the +0.04-kb CRE region of the endogenous cpg15 promoter. The −1.56-kb CRE had a negative effect that could be mediated by CREM, because isoforms of CREM are known to function as inhibitors of CREB-mediated transcription (Foulkes et al., 1991) or by a non-CREB family member. EMSAs detected binding of a non-CREB family member to each of the three cpg15 CRE sites. The −1.56-kb CRE showed a higher affinity to this factor compared to the +0.04-kb CRE. If this factor is a repressor, its differential binding preference to the two CRE sites could explain the opposite effects of mutating these sites.

Given that transcriptional regulation is combinatorial by nature and commonly involves multiple factors, it is not unusual that the mutation of individual CRE sites in the cpg15 promoter did not result in a large and cumulative down-regulation of its transcription. In the case of the c-fos promoter, combined mutations of the CRE, SRE, and cis-inducible elements (SIE) result in marked reduction of activity-dependent expression (Johnson et al., 1997). However, mutation of each individual site has a small or insignificant effect. It is therefore possible that the effect of mutations in cpg15’s CREs or EGR RE would become more significant when combined with mutations of other, as yet unidentified transcription factor binding sites. Our analysis of the cpg15 promoter and the requirement for multiple kinase pathways suggest that multiple transcription factors, including CREB, regulate cpg15 expression through multiple promoter elements.

Activation of cpg15 by cAMP pathways

Our results showing that forskolin induces cpg15 expression indicate that cAMP-dependent pathways can activate cpg15 transcription. However, activation of PKA was not sufficient for cpg15 expression and required electrical activity mediated by NMDA receptors and L-type VSCCs. Spontaneous electrical activity in culture may result in low-level activation of MAPK or CaMK pathways that may converge with the PKA pathway to activate cpg15 expression. Another possibility is that cAMP may stimulate the electrical activity of cultured neurons, possibly through cyclic nucleotide gated channels (Zagotta and Siegelbaum, 1996), resulting in activation of pathways similar to PTX stimulation.

Activation of cpg15 expression by cAMP pathways suggests that in addition to synaptic stimulation, cpg15 may be activated by extracellular signals such as neurotransmitters, hormones, or growth factors that activate receptors coupled to adenylate cyclase. The requirement for electrical activity in cAMP mediated activation of cpg15 suggests that extracellular signals activating adenylate cyclase are only effective on neurons that are simultaneously active. Limiting stimulation of cpg15 expression by nonsynaptic signals to active neurons may be important for cpg15’s role in plasticity.

Similarities and differences in regulation of cpg15 and other effector genes

In comparing the signaling pathways that regulate activity-dependent expression of various effector genes, we can begin to identify common elements that are likely to be generally important for plasticity. Activity-dependent expression of cpg15 requires both the MAPK and CaMK pathways but not PKA activation. In contrast, homer 1a expression is dependent on MAPK but not on CaMK pathways (Sato et al., 2001), whereas arc expression is dependent on both PKA and MAPK pathways (Waltereit et al., 2001). From these limited comparisons, MAPK appears to be the common regulator of activity-dependent effector
genes, whereas requirements for CaMK and PKA vary. The contribution of CREB to regulation of some effector genes like neuronal NO synthase (nNOS) (Sasaki et al., 2000) and BDNF (Shieh et al., 1998; Tao et al., 1998) is large, whereas it is less pronounced in the case of cpg15 and undetectable for arc (Waltereit et al., 2001), indicating that CREB may be involved to a different degree in regulating expression of activity-dependent genes. The requirement for different signaling pathways may also depend on the cell type, as shown for c-fos (Johnson et al., 1997). Further analysis of the signaling pathways that regulate different activity-dependent effector genes will be important for understanding how their combinatorial activation is translated into functional and structural changes at the synapse.

Conclusion

>cpg15 is an activity-dependent gene regulated by Ca\(^{2+}\) influx through NMDA receptors and L-type VSCCs, MAPK and CaMK signal transduction pathways, and CREB. Such genes that are also capable of directly influencing neuronal morphology and synaptic physiology are likely to be key players in activity-regulated transcriptional programs that affect long-term structural and functional synaptic plasticity.

Experimental methods

Analysis of mouse genomic DNA and promoter sequence

A bacterial artificial chromosome library containing C57BL/6 mouse genomic DNA (Incyte Genomics, Palo Alto, CA) was screened with a 0.4-kb rat cpg15 cDNA fragment corresponding to the coding region. Twelve clones were isolated, digested with multiple restriction enzymes, and screened on Southern blots using oligonucleotides corresponding to different parts of the cpg15 cDNA. Nine overlapping restriction fragments spanning 20.8 kb of genomic DNA, and containing all cpg15 exons with 8.9 kb of additional upstream sequence, were subcloned into pBluescript II SK (Stratagene, La Jolla, CA). After restriction mapping of this entire region, exon/intron boundaries and 1.9 kb upstream of the translation start site were sequenced (GenBank accession number AY150584). Database searches identified the homologous human cpg15 gene in a working draft sequence segment of chromosome 6 (GenBank accession number 12732575). The promoter region was searched for potential transcription factor binding sites using the TFSEARCH program (Heinemeyer et al., 1997; http://www.cbrc.jp/research/db/TFSEARCH.html).

Nuclear extracts

Nuclear extracts were prepared as described (Ausubel et al., 1999) with the following modifications. Adult mouse brains were homogenized in a Dounce homogenizer (A pestle) with 5 volumes of homogenization buffer [15 mM HEPES (pH 7.9), 250 mM sucrose, 60 mM KCl, 10 mM NaCl, 1 mM EDTA] and a protease/phosphatase inhibitor mix (2 mM NaF, 1 mM Na\(_3\)VO\(_4\), 1 mM PMSF, 1 mM DTT, 1% protease inhibitor cocktail; Sigma, St. Louis, MO). Cells were pelleted by centrifugation at 2,000 rpm for 10 min and then resuspended in 5 volumes of hypotonic solution [10 mM HEPES (pH 7.9), 1.5 mM MgCl\(_2\), 10 mM KCl, 1 mM EDTA] and protease/phosphatase inhibitor mix. After incubation on ice for 10 min, cells were homogenized by Dounce homogenizer (B pestle). Nuclei were collected by centrifugation at 7,000 rpm for 10 min. The pellet was suspended in 1 bed volume of high-salt solution [20 mM HEPES (pH 7.9), 0.8 M NaCl, 1.5 mM MgCl\(_2\), 25% glycerol, 1 mM EDTA] and protease/phosphatase inhibitor mix. After rocking for 30 min at 4°C, the extract was centrifuged at 14,000 rpm for 30 min to remove membrane debris. Protein concentration was determined by the Bradford method (Bio-rad, Hercules, CA).

Electrophoretic mobility shift assay (EMSA)

Consensus and mutated oligonucleotides for CRE, TRE and EGR RE were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). MWG Biotech (High Point, NC) synthesized the following oligonucleotides and their complementary sequence. The binding sequence of each factor is underlined.

- 1.56 kb CRE
 5’-ACCCACACTAGACATCACCAGGGGCA-3’
- 0.84 kb CRE
 5’-CCCTACAGTGACTTCAGGAGGCCC-3’
+0.04 kb CRE
 5’-TGTCATCCCCCAGTGCAGGCTGCTC-3’
- 1.3 kb TRE
 5’-AGATGGCTGACTGTGTTGGGCT-3’
- 0.1 kb TRE
 5’-ATGAAATCTAGTCATGCA-3’
- 0.05 kb TRE
 5’-AGATATCTGATTAATTCAG-3’
- 1.58 kb EGR RE
 5’-CCGCTACCCGCCACCCACCACTGAC-3’
- 1.59 kb EGR RE
 5’-GGGAAGCGCGCGCGCCCCCATCCCGGC-3’
- 0.6 kb CaRE1
 5’-CACGCAGACTTATTTCTTGAGGGGGCCC-3’
BDNF CaRE1
 5’-ACTAGGTGCTATTTCTGAGGCAGGAGGTATCATCAT-3’
mut BDNF CaRE1
 5’-ACTAGATGCTTTCCCGCCAGGAGAGGAGGTATCAT-3’

Annealed, double-stranded oligonucleotides were \(^{32}P\)-labeled by phosphorylation using T4 kinase (New England Biolabs, Beverly, MA). For each reaction, 0.1 ng of labeled oligonucleotide was incubated with 5 \(\mu\)g nuclear extract and 0.5 \(\mu\)g poly(dI-dC) in binding buffer [20 mM Tris–HCl (pH 7.5), 5 mM MgCl\(_2\), 40 mM KCl, 5 mM DTT, 10% glycerol] for 20
min at room temperature. For competition assays, a 100-fold molar excess of unlabeled double-stranded oligonucleotide was added to each reaction. For super-shift assays, 0.4 µg of antibodies (all from Santa Cruz Biotechnology, Santa Cruz, CA) against CREB1 (mouse monoclonal 24H4B), CREM1 (rabbit polyclonal X-12), ATF-1 (mouse monoclonal C41-5-1), EGR1 (rabbit polyclonal C-19), EGR2 (rabbit polyclonal C-14), EGR3 (rabbit polyclonal C-24), or normal rabbit IgG were added after the binding reaction and further incubated for 30 min at room temperature. Samples were separated on a 6% polyacrylamide gel in 1X TGE buffer (50 mM Tris, 0.5 M glycine, 0.5 mM EDTA). The gel was dried and exposed to film.

Mouse primary cortical cultures

Dissociated cultures of cortical neurons were prepared as described (Banker and Goslin, 1998) and modified as follows. Cerebral cortices from embryonic day 16 C57BL/6 mice were dissected in ice-cold Hank’s buffered salt solution (HBSS, Sigma). Cortices were washed with HBSS and then digested by 10 mg/ml trypsin (Sigma) and 0.5 mg/ml DNase (Sigma) in digestion solution [25 mM HEPES (pH 7.2), 137 mM NaCl, 5 mM KCl, 7 mM Na2HPO4] for 10 min at 37°C. After digestion, tissue was washed in HBSS and then triturated with fire-polished Pasteur pipettes in 2 ml of HBSS supplemented with 12 mM MgSO4 and 0.5 mg/ml DNase. Cells were centrifuged for 10 min at 2000 rpm. Cell pellet was resuspended in preequilibrated Neurobasal medium (Life Technologies, Carlsbad, CA) supplemented with B27 (Life Technologies, Carlsbad, CA), 0.5 mM glutamine, and 12.5 µM glutamate. Cells were plated on dishes coated with laminin (Fisher, Pittsburgh, PA) and poly-d-lysine (Fisher, Pittsburgh, PA) at 1 × 106 cells per well on 12-well plates for luciferase assays and PKA assays, at 2.5 × 106 cells per well on 6-well plates for RNA extraction, and at 7.5 × 106 cells per 10 cm dish for chromatin immunoprecipitation. Cultures were maintained in a humidified 37°C incubator with a 5% CO2, 95% air atmosphere. Half of the medium was replaced every 4–5 days with fresh medium without glutamate.

cpg15 promoter and dominant negative constructs

For construction of wild-type cpg15-Luc, a 1.9-kb genomic fragment containing 1.6 kb of the promoter region and 0.3 kb of the 5’ untranslated region of cpg15 was amplified by PCR (Vent DNA polymerase, New England Biolabs, Beverly, MA) from a cpg15 genomic template using primers wt-s and wt-as. The PCR product was digested at KpnI/BamHI sites designed into the primer sequence and cloned into KpnI/BglII sites of the pGL3-Basic vector (Promega, Madison, WI). This placed the cpg15 promoter and 5’ untranslated region upstream of the promoterless firefly luciferase gene. Point mutations were introduced in the cpg15 promoter region using the QuickChange site-directed mutagenesis kit (Stratagene, La Jolla, CA) using the primers designated below and wild-type cpg15-Luc as template. For multiple mutations, the same procedure was repeated sequentially. All mutations were confirmed by sequencing.

Primers used for mutagenesis (mutated bases are shown in lowercase):

- wt-s 5’-GGGGTACCTACCCGCCCCACCCACACTGACATCA-3’
- wt-as 5’-CGGGATCCATCTACGTTTAGTCACAAAC-3’
- mCRE −1.56 5’-ACCCACCCACTGatATCACAGGGCA-3’
- mCRE −0.84 5’-CCCTACAGATGttTTCAGGGGCCCC-3’
- mCRE +0.04 5’-TGTCATCCCCCttGTCAGGCC-3’
- mEGR RE −1.58 5’-CTACCCCCGCCcataCCACCAGTGACATCACC-3’

The pEGFP-C1 expression vector was from Clontech (Palo Alto, CA). A-CREB (Ahn et al., 1998) and K-CREB (Walton et al., 1992) have been previously described. Dominant negative CaMKIV cDNA (Gringhuis et al., 1997) was subcloned into pcDNA3 (Invitrogen, Carlsbad, CA).

Transfections and luciferase assays

Mouse primary cortical cultures at 6 days in vitro (div) were transfected by the calcium phosphate method (Banker and Goslin, 1998). Culture medium was replaced for 1 h with Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10 mM MgCl2 and 1 mM kynurenine acid. To form the calcium phosphate/DNA precipitate, DNA was incubated for 25 min in 125 mM CaCl2 with 1X HBSS [137 mM NaCl, 5 mM KCl, 0.7 mM Na2HPO4, 7 mM glucose, 21 mM HEPES (pH 7.07)]. For each transfection, 0.5 µg of firefly luciferase reporter plasmid and 0.5 µg of internal control vector pRL-TK carrying a Renilla luciferase gene driven by the HSV thymidine kinase promoter (Promega, Madison, WI) were used per well. For assays using dominant negative constructs, 3 µg of expression vector containing the appropriate gene were cotransfected with the reporter plasmids. After the precipitate was added to the cells and incubated for 30 min, cells were washed with supplemented DMEM and then replaced in their original medium. Pharmacological treatments were done for 9 h at 14–16 div. After treatment, cells were harvested with 200 µl of passive lysis buffer (Promega, Madison, WI) per well, and 20 µl of lysate was used to measure the luciferase activity using the Dual-luciferase reporter assay system (Promega, Madison, WI). Firefly luciferase activity was normalized to Renilla luciferase activity to control for transfection efficiency and sample handling. In each case, standard error of mean (SEM) was calculated for at least three experiments. Statistical significance was determined by analysis of variance
(ANOVA) and Student–Newman–Keuls (SNK) post hoc analysis. Effects of CRE and EGR RE mutations were determined by two-factor factorial ANOVA. Both analyses were done using StatView software (SAS Institute, Cary, NC).

Pharmacology

Primary cortical cultures were cultured for 14–16 div and treated with picrotoxin (PTX, 50 μM; Tocris, Ellissville, MO), forskolin (10 μM; Sigma), or tetrodotoxin (TTX, 1 μM; Calbiochem). Each drug was added directly to the culture medium and cells were harvested 9 h later. In experiments using Ca2+/H9262 MO, forskolin (10 μM; Tocris), nifedipine (5 μM; Tocris, Ellissville, MO), KN93 (0.5 μM; Calbiochem), KN92 (0.5 μM; Calbiochem), U0126 (5 μM; Calbiochem), or U0124 (5 μM; Calbiochem) were added directly to the culture medium 30 min prior to stimulation. To stimulate the L-type VSCCs, cultures were treated with 50 mM KCl in the presence of CPP. In experiments using Ca2+/H9262 MO, forskolin (10 μM; Tocris), nifedipine (5 μM; Tocris, Ellissville, MO), KN93 (0.5 μM; Calbiochem), KN92 (0.5 μM; Calbiochem), U0126 (5 μM; Calbiochem), or U0124 (5 μM; Calbiochem) were added directly to the culture medium 30 min prior to stimulation. To stimulate the L-type VSCCs, cultures were treated with 50 mM KCl in the presence of CPP. In experiments using Ca2+/H9262 MO, forskolin (10 μM; Tocris), nifedipine (5 μM; Tocris, Ellissville, MO), KN93 (0.5 μM; Calbiochem), KN92 (0.5 μM; Calbiochem), U0126 (5 μM; Calbiochem), or U0124 (5 μM; Calbiochem) were added directly to the culture medium 30 min prior to stimulation. To stimulate the L-type VSCCs, cultures were treated with 50 mM KCl in the presence of CPP. In experiments using Ca2+/H9262 MO, forskolin (10 μM; Tocris), nifedipine (5 μM; Tocris, Ellissville, MO), KN93 (0.5 μM; Calbiochem), KN92 (0.5 μM; Calbiochem), U0126 (5 μM; Calbiochem), or U0124 (5 μM; Calbiochem) were added directly to the culture medium 30 min prior to stimulation. To stimulate the L-type VSCCs, cultures were treated with 50 mM KCl in the presence of CPP. In experiments using Ca2+/H9262 MO, forskolin (10 μM; Tocris), nifedipine (5 μM; Tocris, Ellissville, MO), KN93 (0.5 μM; Calbiochem), KN92 (0.5 μM; Calbiochem), U0126 (5 μM; Calbiochem), or U0124 (5 μM; Calbiochem) were added directly to the culture medium 30 min prior to stimulation. To stimu...
EDTA, 4 mM EGTA, 1% Triton X-100, 20 mM DTT, 1 mM 3-isobutylmethylxanthine, 1% protease inhibitor cocktail (Sigma), 2 mM PMSF. After incubation on ice for 10 min, the lysate was centrifuged at 14,000 rpm for 10 min, and supernatant was collected. Cell lysate (10 μl) was added to 10 μl of reaction buffer to final concentrations of 50 mM Tris–HCL (pH 7.5), 5 mM MgCl₂, 30 μM Kemptide (Sigma), 5 μM 32P-labeled γ-ATP (2.2 × 10⁴ dpm/pmol, Amersham Pharmacia, Piscataway, NJ), with or without 10μM cAMP. After a 5-min incubation at 30°C, 15 μl of the reaction was spotted onto phosphocellulose filters (P81, Whatman, Clifton, NJ), and these were washed five times in 75 mM phosphoric acid and once in ethanol. Filters were air-dried and radioactivity was measured with a liquid scintillation counter. Statistical significance was determined by ANOVA and SNK post hoc analysis using StatView software (SAS Institute, Cary, NC).

Acknowledgments

We thank Jonathan Barchi for help with cpg15 promoter constructs, Dr. Michael Greenberg for valuable suggestions, Drs. Jacqueline Lees and Phil Iaquinta for advice on ChIP experiments, Dr. David Ginty for A-CREB, Dr. Richard Goodman for K-CREB, and Dr. Thomas Soderling for dominant negative CaMKIV constructs. We are particularly grateful to Drs. Hyeye Kang and Susumu Tonegawa for the gift of dominant negative CaMKIV transgenic mice before publication. We also thank Drs. Hollis Cline, Morgan Sheng, and Paul Garrity and members of the Nedivi lab for critical reading of the article. This work was supported by grants from the National Eye Institute and the Ellison Medical Foundation. E.N. is a recipient of the Fred and Carol Middleton Career Development Chair.

References

