
Functional implications of inhibitory synapse placement
on signal processing in pyramidal neuron dendrites
Josiah R Boivin1,2,3 and Elly Nedivi1,2,3

Available online at www.sciencedirect.com

ScienceDirect
A rich literature describes inhibitory innervation of pyramidal

neurons in terms of the distinct inhibitory cell types that target

the soma, axon initial segment, or dendritic arbor. Less

attention has been devoted to how localization of inhibition to

specific parts of the pyramidal dendritic arbor influences

dendritic signal detection and integration. The effect of

inhibitory inputs can vary based on their placement on dendritic

spines versus shaft, their distance from the soma, and the

branch order of the dendrite they inhabit. Inhibitory synapses

are also structurally dynamic, and the implications of these

dynamics depend on their dendritic location. Here we consider

the heterogeneous roles of inhibitory synapses as defined by

their strategic placement on the pyramidal cell dendritic arbor.
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Introduction
Each pyramidal neuron harbors thousands of excitatory

and inhibitory synapses [1,2], and the integration of

synaptic signals from different locales across these neu-

rons ultimately determines their action potential output

at any given time [3–8,9�]. A growing body of literature on

inhibitory innervation of pyramidal cells has defined, in

increasing detail, the inhibitory cell types that target

distinct subcellular domains of postsynaptic pyramidal

neurons (reviewed in [10,11�,12–15]). The influence of

inhibitory inputs on action potential initiation at the soma

or axon initial segment has received much attention

(reviewed in [10,11�,14,15]). Yet, the vast majority of

inhibitory synapses onto pyramidal neurons are located
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on the dendrites [1,2,11�,16], where they play an impor-

tant role in shaping dendritic integration (Figure 1) [12].

Inhibitory synapses on dendrites arise from multiple

inhibitory cell types, but are canonically thought to be

mostly from somatostatin-expressing (SOM) interneurons

[11�,17]. Despite their perceived monolithic innervation

by SOM interneurons, dendritic inhibitory synapses can

be considered heterogeneous based on their diverse

effects on dendritic integration dependent on where they

map onto the pyramidal dendritic arbor.

In contrast to excitatory synapses, which reside primarily

on dendritic spines [1], dendritic inhibitory synapses

reside on both the dendritic shaft and spines

[1,2,18�,19,20]. Inhibitory shaft and spine synapses have

distinct effects on the postsynaptic cell due to the

compartmentalization of voltage within spines [21,22�].
The rich and complex structure of the dendritic arbor

confers additional heterogeneity to inhibitory influence

due to the asymmetric cable properties of dendrites, the

influence of branch points on current propagation, and the

differential impact of back propagating action potentials

(bAPs) and excitatory synaptic inputs at proximal versus

distal locations [3,8,9�]. In an added layer of complexity,

inhibitory synapses are structurally dynamic, with turn-

over far outpacing that of excitatory synapses [18�,19,20],
and the consequence of their removal or addition will also

differ depending on dendritic location. Here, we discuss

the location-dependent effects of dendritic inhibition on

the detection and integration of excitatory signal, and the

implications of inhibitory synapse structural dynamics

based on dendritic placement.

Location-specific effects of inhibition on the
detection and integration of excitatory signal
Excitatory synapses onto pyramidal cells are located on

dendritic spines that are widely spread across a complex

dendritic arbor [1]. Dendritic inhibition can attenuate

these excitatory synaptic inputs in a spatially restricted

manner (Figure 2) [12,23,24,25�], with inhibitory synap-

ses on the dendritic shaft affecting excitatory synaptic

inputs located on the same dendritic branch [24]. The

effects of inhibitory synapses onto dendritic spines is

further compartmentalized within the spine, so that

GABA uncaging onto a spine can inhibit calcium influx

evoked by glutamate uncaging at that spine, with no

effect on calcium influx in neighboring spines [23].

Inhibitory synapses on dendritic spines would likely have

the most influence in distal locations, where bAPs are

small or undetectable [3] and excitatory synaptic inputs
www.sciencedirect.com

mailto:nedivi@mit.edu
http://dx.doi.org/10.1016/j.conb.2018.01.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.conb.2018.01.013&domain=pdf
http://www.sciencedirect.com/science/journal/09594388


Implications of inhibitory synapse placement Boivin and Nedivi 17

Figure 1
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The vast majority of a cortical pyramidal cell’s inhibitory synapses are

located on the dendritic arbor, with a smaller number located on the

soma and axon initial segment. Inhibitory synapses are schematized

by red circles. Dendritic inhibitory synapses are found on both the

shaft and spines, with inhibitory spine synapses located preferentially

on distal dendrites. Spines that house inhibitory synapses also contain

large, stable excitatory synapses (not pictured). Inset shows an

enlarged version of the distal dendritic branches in the boxed region.

Filled triangles point to inhibitory spine synapses; open triangles point

to inhibitory shaft synapses.
are the primary source of depolarization. Interestingly,

inhibitory synapses on dendritic spines are located pref-

erentially in distal regions, more than 125 mm from the

soma [20], where the relative influence of excitatory

synaptic inputs compared to bAPs is greatest.

Modeling predicts that an inhibitory input onto a spine

could reduce the amplitude of an excitatory postsynaptic

potential by approximately 50% within the spine [11�].
Accordingly, experimental evidence indicates that GABA

uncaging onto individual spines attenuates but does not

fully eliminate calcium influx induced by localized gluta-

mate uncaging [23]. Thus, an inhibitory synapse on a

dendritic spine may not act as an on/off switch for the

excitatory input, but rather would regulate the strength of

this excitatory input in a graded fashion. Given that initial

activation of a strong excitatory input may saturate the

spine [26], attenuation by inhibitory synapses could serve

to prevent saturation, effectively expanding the dynamic

range of individual excitatory inputs.

An individual excitatory synaptic input can produce a

large voltage change within the spine head on which it

is located, but this depolarization attenuates sharply as

current flows from the spine into the dendritic shaft, and

through dendritic branching points to larger-diameter,
www.sciencedirect.com 
more proximal regions of dendrite [3,21,27]. To propagate

excitatory synaptic inputs to the soma, particularly when

inputs are located on distal dendrites, pyramidal neurons

rely on regenerative dendritic spikes that occur when

multiple sources of depolarization converge

[3,5,6,8,9�,28–31]. For example, depolarization from

nearby co-active excitatory synapses can sum non-linearly

to initiate a dendritic spike [28,29,32–34]. Depolarization

from a bAP or an earlier dendritic spike can also lower the

threshold for initiating a dendritic spike in response to

excitatory synaptic input [3,28]. Dendritic inhibition reg-

ulates this process of coincidence detection and signal

propagation by attenuating bAPs and by directly curtail-

ing dendritic spikes [12].

Modeling predicts that an individual inhibitory synapse

on the dendritic shaft could substantially reduce bAP-

induced depolarization and the resulting calcium influx

within the dendritic branch in which it resides (Figure 2)

[35]. Experimental evidence bears out this prediction:

GABA uncaging at a single site on the dendrite can

attenuate bAP-induced  calcium influx within approxi-

mately 20 mm of the uncaging site on the same dendritic

branch [36,37]. Similarly, stimulation of an individual

inhibitory interneuron can attenuate bAP-induced cal-

cium influx within a spatially restricted region of the

dendritic branch on which a putative synaptic contact is

located, with negligible effects on neighboring branches

[35,38�]. Inhibitory synapses on dendritic spines have a

more compartmentalized effect on bAPs: GABA unca-

ging onto a single spine can attenuate bAP-induced

calcium influx within the same spine, with no detect-

able influence on neighboring spines [23]. These eff-

ects of inhibitory synapses on the spread of bAPs are

likely to be most influential in proximal regions of the

dendritic tree that are readily invaded by bAPs, as

opposed to distal regions in which bAPs are smaller or

undetectable [3].

In addition to attenuating bAPs, inhibition can curtail

dendritic spikes within specific dendritic branches (Fig-

ure 2). For example, GABA iontophoresis onto a pyrami-

dal dendrite increases the threshold amount of glutamate

uncaging necessary for eliciting a dendritic spike [39].

GABA iontophoresis is most effective at raising the

threshold for dendritic spike initiation when it is co-

localized with, or slightly distal to, the sites of glutamate

receptor activation, while GABA iontophoresis proximal

to the sites of glutamate uncaging is most effective at

reducing the amplitude of the spike once it is initiated

[39]. These results are bolstered by modeling data sug-

gesting that a single inhibitory synapse placed at the site

of, or slightly distal to, co-active excitatory synaptic inputs

can curtail the resulting NMDA spike within the same

dendritic branch [40�]. Thus, the placement of an inhibi-

tory synapse in relation to nearby excitatory inputs can

determine its effects on dendritic spiking.
Current Opinion in Neurobiology 2018, 51:16–22
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Figure 2

bAP

bAP

(a')

(a)

(b')

(b)

(c')

(c)

(d')

(d)

Excitatory synapse
Inhibitory synapse
Synapse with active input
Propagation of bAP
Propagation of dendritic spike

Current Opinion in Neurobiology

Effects of inhibitory synapses on the propagation of depolarization in the dendritic shaft and spines. The effects of inhibitory synaptic inputs are

illustrated at sites labeled a–d in the top figure. The same regions of dendrite are shown without inhibition and labeled a0–d0 in the bottom figure.

(a) An inhibitory synapse on the dendritic shaft reduces the spread of the bAP (denoted by green fill) in a restricted region of the dendritic shaft

and an adjacent spine. (a0) Without inhibition, the bAP propagates along the same branch with only slight attenuation, but then weakens

substantially as it crosses a branching point and reaches more distal regions of dendrite. (b) An inhibitory synapse on the dendritic shaft prevents

the detection of two convergent excitatory inputs (denoted by blue fill) and the bAP within the adjacent dendritic shaft. (b0) Without inhibition, the

convergence of excitatory synaptic input with the bAP initiates a dendritic spike (denoted by purple fill). (c) An inhibitory synapse on a dendritic

spine attenuates an excitatory input onto that spine, while an adjacent spine (d) is unaffected. (c0,d0) Without inhibition, the two distal excitatory

inputs produce depolarization shown in blue.
A relatively small dendritic spike in a thin dendrite may

fail to propagate to the soma, but multiple dendritic

spikes can converge and summate, producing coopera-

tivity among co-active excitatory inputs on a larger scale

[3,28]. Multiple co-active inhibitory synapses can pro-

duce far-reaching inhibition of dendritic spikes in the
Current Opinion in Neurobiology 2018, 51:16–22 
pyramidal arbor [41–44,45�]. Modeling based on a recon-

structed cortical pyramidal neuron and its SOM cell

inputs suggests that coordinated inhibition from sparse,

distally located inhibitory synapses can spread centripe-

tally, ultimately blocking the initiation of calcium spikes

at the main branch point of the apical dendrite [41]. This
www.sciencedirect.com
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inhibition is predicted to decouple the two main sites of

spike initiation in the cortical pyramidal neuron, the

somatic/axonal region and the main branch point of the

apical dendrite, substantially altering the firing of the

neuron [41]. Slice [42,43,46–48] and in vivo [48] electro-

physiology studies confirm that precisely timed stimula-

tion of distal inhibitory inputs can indeed block the

initiation of spiking in the apical dendrite. Further, this

blockade of spiking in the apical dendrite can prevent

bursts of somatic action potentials in response to simul-

taneous current injections at the soma and distal dendrites

[47]. These studies suggest that the coordinated action of

even a few strategically placed inhibitory synapses can

not only gate the detection of individual excitatory inputs

or bAPs, but can regulate the integration of multiple

sources of excitatory signal, ultimately influencing a neu-

ron’s action potential output.

Role of inhibition in synaptic plasticity
Spike timing dependent plasticity (STDP), which can

produce strengthening or weakening of synapses, is

dependent on the correlated or uncorrelated, respec-

tively, nature of depolarizing events [3,49–51]. STDP

provides a mechanism by which individual pyramidal

neurons can associate inputs arriving within a specific

time window, but potentially at disparate locations on the

dendritic arbor [49]. The changes in the weights of

excitatory synapses that participate in correlated events

(reviewed in [3,49]) often go hand in hand with changes in

synapse size and spine morphology, i.e. spine head expan-

sion or shrinkage, and can ultimately lead to spine gain

or loss [52,53].

Since inhibition can attenuate the detection or summa-

tion of what would otherwise be correlated synaptic

inputs, inhibitory synapse activity can have a profound

effect not only in attenuating the spread and integration

of convergent sources of depolarization, but also on

whether they lead to synapse strengthening or weakening

[3,12]. Modeling predicts that individual inhibitory syn-

apses on a pyramidal dendrite can alter the propensity for

long-term potentiation or long-term depression at nearby

excitatory synapses, with inhibitory inputs differentially

affecting the weights of excitatory synapses dependent on

their location proximal or distal to these excitatory syn-

apses [54].

Along with its influence on synaptic strength, dendritic

inhibition can influence excitatory synaptic structural

plasticity and circuit remodeling [12]. For example,

GABA uncaging at the site of convergent bAPs and

glutamate uncaging can induce the shrinkage and elimi-

nation of nearby spines, which likely represents the

weakening and removal of excitatory synapses [37].

The ability of GABA uncaging onto the dendritic shaft

to induce spine shrinkage is limited to spines within

15 mm of the uncaging site [37]. Thus, the specific
www.sciencedirect.com 
location of an inhibitory synapse also determines its

effects on excitatory circuit remodeling.

Implications of inhibitory synapse structural
dynamics
Dendritic inhibitory synapses are highly dynamic

[18�,19,20]. Both shaft and spine synapses show repeated

removal and recurrence at stable sites, suggesting they

may reversibly modulate the ability of individual spines

or dendritic branches to detect and participate in plastic-

ity-inducing events [18�].

In response to monocular deprivation, recurrent inhibi-

tory synapses shift to a dynamic state in which their

average lifetime is reduced and the time between re-

appearances is lengthened [18�]. When these inhibitory

synapses are absent, excitatory inputs and bAPs that were

once attenuated may now be detected, allowing the

disinhibited dendrite to integrate convergent excitatory

inputs. This disinhibition may play a critical role in ocular

dominance plasticity by creating an environment that is

permissive for STDP of excitatory synapses, enabling

disinhibited dendritic branches to participate in experi-

ence-dependent circuit remodeling [55,56].

The most dynamic inhibitory synapses are those located

on spines [18�,20]. These dually innervated spines (DiS),

which also house an excitatory synapse, are extremely

stable, as are the excitatory synapses they house [18�].
The apposition of a stable excitatory input with a highly

dynamic inhibitory input on the same spine potentially

enables rapidly reversible inhibitory modulation of input

efficacy at stable excitatory synapses [18�]. This could

dynamically regulate not only the magnitude of specific

excitatory synaptic inputs [23], but also their integration

with bAPs or other nearby excitatory synaptic and local

regenerative events. Thus, inhibitory spine synapse

dynamics would allow both spatially and temporally

restricted exclusion of specific excitatory connections

from circuit activity and synaptic plasticity.

The ability of inhibitory shaft and spine synapses to

reversibly modulate excitatory circuits that appear struc-

turally stable may generalize more broadly. For example,

in vivo imaging studies show that monocular deprivation

does not alter spine dynamics on L2/3 pyramidal neurons

in primary visual cortex [20,57], but it does alter the

structural dynamics of inhibitory synapses on the den-

dritic spines and shafts of these same neurons [18�,19,20].
In this case, the absence of structural excitatory circuit

change as inferred by spine dynamics does not necessarily

indicate a lack of functional rewiring that could be pow-

ered by structural remodeling of inhibitory synapses.

Conclusion and future directions
In vivo imaging of genetically labeled inhibitory synapses

has revealed structurally dynamic synapses distributed
Current Opinion in Neurobiology 2018, 51:16–22
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strategically throughout the pyramidal dendritic tree.

Slice electrophysiology and calcium imaging suggest that

by influencing the detection and integration of multiple

sources of excitatory signal, these inhibitory synapses may

alter information processing and the propensity for syn-

aptic plasticity within their local circuit. Extending such

studies to an in vivo context and establishing their rele-

vance during a behavioral task is significantly more chal-

lenging. Recently, new in vivo functional manipulation

and imaging tools have enabled experiments demonstrat-

ing dendritic integration within intact circuits in specific

behavioral contexts [58–62]. However, we lack explicit

knowledge of the type of information being integrated,

and our knowledge related to inhibition in these in vivo
paradigms is still in its infancy. Pioneering in vivo studies

show that inhibition can suppress calcium spikes in the

apical dendrites of pyramidal cells [61,63] and demon-

strate the feasibility of calcium imaging of GABAergic

axons in awake behaving animals [64,65]. One of the

limitations to combining synaptic resolution functional

studies of both excitatory and inhibitory activity has been

the ability to concurrently monitor both elements in
vivo. Development of tools for functional imaging in

multiple colors [66], would open the door to future in
vivo studies that include simultaneous monitoring of

inhibitory afferent activity and the integration of excit-

atory signal in the pyramidal dendrites they target. Fur-

ther, expanding the palette of genetic calcium sensors and

integrating their use with new methods for genetically

labeling inhibitory postsynaptic sites in vivo [18�,19,20]
would allow monitoring of dendritic function in relation

to the placement and structural dynamics of dendritic

inhibitory synapses. Ultimately, future studies may reveal

the effects of strategically placed inhibitory inputs on the

integration of excitatory signal across the full dendritic

arbor within the brain of an animal performing a well-

defined behavioral task.
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Disease. Edited by Emoto K, Wong R, Huang E, Hoogenraad C.
Springer; 2016:467-487.

This review describes the placement of excitatory and inhibitory synapses
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